BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37871533)

  • 1. Mitochondrial complex I ROS production and redox signaling in hypoxia.
    Okoye CN; Koren SA; Wojtovich AP
    Redox Biol; 2023 Nov; 67():102926. PubMed ID: 37871533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
    Chen CL; Zhang L; Jin Z; Kasumov T; Chen YR
    Am J Physiol Cell Physiol; 2022 Jan; 322(1):C12-C23. PubMed ID: 34757853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse Electron transfer through complex I.
    Dubouchaud H; Walter L; Rigoulet M; Batandier C
    J Bioenerg Biomembr; 2018 Oct; 50(5):367-377. PubMed ID: 30136168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
    Zickermann V; Dröse S; Tocilescu MA; Zwicker K; Kerscher S; Brandt U
    J Bioenerg Biomembr; 2008 Oct; 40(5):475-83. PubMed ID: 18982432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches.
    Murai M
    Biosci Biotechnol Biochem; 2020 Jul; 84(7):1322-1331. PubMed ID: 32264779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).
    Zhao RZ; Jiang S; Zhang L; Yu ZB
    Int J Mol Med; 2019 Jul; 44(1):3-15. PubMed ID: 31115493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of chemical probes to detect mitochondrial ROS by flow cytometry and spectrofluorometry.
    Chen J; Mathews CE
    Methods Enzymol; 2014; 542():223-41. PubMed ID: 24862269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton leak through the UCPs and ANT carriers and beyond: A breath for the electron transport chain.
    Nesci S
    Biochimie; 2023 Nov; 214(Pt B):77-85. PubMed ID: 37336388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of reactive oxygen species and redox balance in cardiac mitochondria.
    Gauthier LD; Greenstein JL; Cortassa S; O'Rourke B; Winslow RL
    Biophys J; 2013 Aug; 105(4):1045-56. PubMed ID: 23972856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.