These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37872140)

  • 1. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon.
    Ma J; Zhou T; Tang M; Li H; Zhang Z; Xi X; Martin M; Baron T; Liu H; Zhang Z; Chen S; Sun X
    Light Sci Appl; 2023 Oct; 12(1):255. PubMed ID: 37872140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Dirac-vortex microcavity laser for robust on-chip optoelectronics.
    Wu Y; Mi Z
    Light Sci Appl; 2024 Mar; 13(1):64. PubMed ID: 38438378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac-vortex topological cavities.
    Gao X; Yang L; Lin H; Zhang L; Li J; Bo F; Wang Z; Lu L
    Nat Nanotechnol; 2020 Dec; 15(12):1012-1018. PubMed ID: 33077965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001).
    Zhou T; Tang M; Xiang G; Xiang B; Hark S; Martin M; Baron T; Pan S; Park JS; Liu Z; Chen S; Zhang Z; Liu H
    Nat Commun; 2020 Feb; 11(1):977. PubMed ID: 32080180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competing Vortex Topologies in Iron-Based Superconductors.
    Hu LH; Wu X; Liu CX; Zhang RX
    Phys Rev Lett; 2022 Dec; 129(27):277001. PubMed ID: 36638298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithically integrated photonic crystal surface emitters on silicon with a vortex beam by using bound states in the continuum.
    Li H; Tang M; Zhou T; Xie W; Li R; Gong Y; Martin M; Baron T; Chen S; Liu H; Zhang Z
    Opt Lett; 2023 Apr; 48(7):1702-1705. PubMed ID: 37221745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tunable topological insulator in the spin helical Dirac transport regime.
    Hsieh D; Xia Y; Qian D; Wray L; Dil JH; Meier F; Osterwalder J; Patthey L; Checkelsky JG; Ong NP; Fedorov AV; Lin H; Bansil A; Grauer D; Hor YS; Cava RJ; Hasan MZ
    Nature; 2009 Aug; 460(7259):1101-5. PubMed ID: 19620959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic Majorana quantum cascade laser with polarization-winding emission.
    Han S; Chua Y; Zeng Y; Zhu B; Wang C; Qiang B; Jin Y; Wang Q; Li L; Davies AG; Linfield EH; Chong Y; Zhang B; Wang QJ
    Nat Commun; 2023 Feb; 14(1):707. PubMed ID: 36759671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities.
    Lee A; Jiang Q; Tang M; Seeds A; Liu H
    Opt Express; 2012 Sep; 20(20):22181-7. PubMed ID: 23037366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curved InGaAs nanowire array lasers grown directly on silicon-on-insulator.
    Ratiu BP; Temu B; Messina C; Abouzaid O; Rihani S; Berry G; Oh SS; Li Q
    Opt Express; 2023 Oct; 31(22):36668-36676. PubMed ID: 38017812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological Superconductivity on the Surface of Fe-Based Superconductors.
    Xu G; Lian B; Tang P; Qi XL; Zhang SC
    Phys Rev Lett; 2016 Jul; 117(4):047001. PubMed ID: 27494494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity.
    Liu J; Xu Y; Li R; Sun Y; Xin K; Zhang J; Lu Q; Zhuo N; Liu J; Wang L; Cheng F; Liu S; Liu F; Zhai S
    Nat Commun; 2024 May; 15(1):4431. PubMed ID: 38789458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator.
    Han Y; Ng WK; Xue Y; Li Q; Wong KS; Lau KM
    Opt Lett; 2019 Feb; 44(4):767-770. PubMed ID: 30767982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs/GaAs Quantum Dot Microlasers Formed on Silicon Using Monolithic and Hybrid Integration Methods.
    Zhukov AE; Kryzhanovskaya NV; Moiseev EI; Dragunova AS; Tang M; Chen S; Liu H; Kulagina MM; Kadinskaya SA; Zubov FI; Mozharov AM; Maximov MV
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
    Tanabe K; Nomura M; Guimard D; Iwamoto S; Arakawa Y
    Opt Express; 2009 Apr; 17(9):7036-42. PubMed ID: 19399078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.
    Kim H; Lee WJ; Farrell AC; Balgarkashi A; Huffaker DL
    Nano Lett; 2017 Sep; 17(9):5244-5250. PubMed ID: 28759243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration.
    Wei WQ; Feng Q; Guo JJ; Guo MC; Wang JH; Wang ZH; Wang T; Zhang JJ
    Opt Express; 2020 Aug; 28(18):26555-26563. PubMed ID: 32906927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus-free 1.5  µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform.
    Wei WQ; Zhang JY; Wang JH; Cong H; Guo JJ; Wang ZH; Xu HX; Wang T; Zhang JJ
    Opt Lett; 2020 Apr; 45(7):2042-2045. PubMed ID: 32236063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically pumped topological laser with valley edge modes.
    Zeng Y; Chattopadhyay U; Zhu B; Qiang B; Li J; Jin Y; Li L; Davies AG; Linfield EH; Zhang B; Chong Y; Wang QJ
    Nature; 2020 Feb; 578(7794):246-250. PubMed ID: 32051601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires.
    Martínez LJ; Alén B; Prieto I; Fuster D; González L; González Y; Dotor ML; Postigo PA
    Opt Express; 2009 Aug; 17(17):14993-5000. PubMed ID: 19687977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.