BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37872188)

  • 1. Establishment of the microstructure of porous materials and its relationship with effective mechanical properties.
    Chen K; Qin H; Ren Z
    Sci Rep; 2023 Oct; 13(1):18064. PubMed ID: 37872188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.
    Zieliński TG
    J Acoust Soc Am; 2015 Apr; 137(4):1790-801. PubMed ID: 25920832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different models for simulation of mechanical behaviour of porous materials.
    Muñoz S; Castillo SM; Torres Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():88-96. PubMed ID: 29414480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
    Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE
    Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore Strategy Design of a Novel NiTi-Nb Biomedical Porous Scaffold Based on a Triply Periodic Minimal Surface.
    Lv Y; Liu G; Wang B; Tang Y; Lin Z; Liu J; Wei G; Wang L
    Front Bioeng Biotechnol; 2022; 10():910475. PubMed ID: 35757802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique.
    Lee JB; Maeng WY; Koh YH; Kim HE
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and mechanical properties analysis of porous structure for bone tissue engineering.
    Cui J; Yi Y; Zhang J; Chai L; Jin H
    Biomed Mater Eng; 2022; 33(6):465-476. PubMed ID: 35662101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology.
    Chao L; He Y; Gu J; Xie D; Yang Y; Shen L; Wu G; Wang L; Tian Z
    J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ti64/20Ag Porous Composites Fabricated by Powder Metallurgy for Biomedical Applications.
    Olmos L; Gonzaléz-Pedraza AS; Vergara-Hernández HJ; Chávez J; Jimenez O; Mihalcea E; Arteaga D; Ruiz-Mondragón JJ
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tortuosity and the Averaging of Microvelocity Fields in Poroelasticity.
    Souzanchi MF; Cardoso L; Cowin SC
    J Appl Mech; 2013 Mar; 80(2):0209061-209065. PubMed ID: 24891725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Characteristics and Flexural Strength of Porous-Surface Designed Zirconia Manufactured via Stereolithography.
    Ma Q; Ding Q; Zhang L; Sun Y; Xie Q
    J Prosthodont; 2023 Apr; 32(4):e81-e89. PubMed ID: 35778958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.