BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37872298)

  • 1. Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images.
    Gharaibeh Y; Lee J; Zimin VN; Kolluru C; Dallan LAP; Pereira GTR; Vergara-Martel A; Kim JN; Hoori A; Dong P; Gamage PT; Gu L; Bezerra HG; Al-Kindi S; Wilson DL
    Sci Rep; 2023 Oct; 13(1):18110. PubMed ID: 37872298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography-derived predictors of stent expansion in calcified lesions.
    Ziedses des Plantes AC; Scoccia A; Neleman T; Groenland FTW; van Zandvoort LJC; Ligthart JMR; Witberg KT; Liu S; Boersma E; Nuis RJ; den Dekker WK; Wilschut J; Diletti R; Zijlstra F; Van Mieghem NM; Daemen J
    Catheter Cardiovasc Interv; 2023 Jul; 102(1):25-35. PubMed ID: 37210611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Post-Dilatation Strategies for Optimal Stent Expansion in Calcified Coronary Lesions: Ex Vivo Analysis With Optical Coherence Tomography.
    Dallan LAP; Zimin VN; Lee J; Gharaibeh Y; Kim JN; Pereira GTR; Vergara-Martel A; Dong P; Gu L; Wilson DL; Bezerra HG
    Cardiovasc Revasc Med; 2022 Oct; 43():62-70. PubMed ID: 35597721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fighting calcification with optical coherence tomography-guided percutaneous coronary intervention. Commentary on the optical coherence tomography-derived predictors of stent expansion in calcified lesions.
    Sonoda S; Node K
    Catheter Cardiovasc Interv; 2023 Aug; 102(2):394-395. PubMed ID: 37471715
    [No Abstract]   [Full Text] [Related]  

  • 5. Optical frequency-domain imaging findings to predict good stent expansion after rotational atherectomy for severely calcified coronary lesions.
    Kobayashi N; Ito Y; Yamawaki M; Araki M; Sakai T; Sakamoto Y; Mori S; Tsutsumi M; Nauchi M; Honda Y; Tokuda T; Makino K; Shirai S; Hirano K
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):867-874. PubMed ID: 29318407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Percutaneous Coronary Intervention in Calcified Lesions: Insights From Optical Coherence Tomography of Atherectomy.
    Mehanna E; Abbott JD; Bezerra HG
    Circ Cardiovasc Interv; 2018 May; 11(5):e006813. PubMed ID: 29743161
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of orbital atherectomy in calcified coronary artery lesions as assessed by optical coherence tomography.
    Yamamoto MH; Maehara A; Kim SS; Koyama K; Kim SY; Ishida M; Fujino A; Haag ES; Alexandru D; Jeremias A; Sosa FA; Karimi Galougahi K; Kirtane AJ; Moses JW; Ali ZA; Mintz GS; Shlofmitz RA
    Catheter Cardiovasc Interv; 2019 Jun; 93(7):1211-1218. PubMed ID: 30328257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence and anatomical factors associated with stent under-expansion in non-severely calcified lesions.
    Sato T; Matsumura M; Yamamoto K; Shlofmitz E; Moses JW; Khalique OK; Shin D; Dakroub A; Singh M; Malik S; Tsoulios A; Cohen DJ; Mintz GS; Shlofmitz RA; Jeremias A; Ali ZA; Maehara A
    Catheter Cardiovasc Interv; 2024 May; 103(6):833-842. PubMed ID: 38639137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions: First Description.
    Ali ZA; Brinton TJ; Hill JM; Maehara A; Matsumura M; Karimi Galougahi K; Illindala U; Götberg M; Whitbourn R; Van Mieghem N; Meredith IT; Di Mario C; Fajadet J
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):897-906. PubMed ID: 28797412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography findings after longitudinal ablation for an underexpanded stent in a heavily calcified lesion: a case report.
    Koide M; Inoue K; Matsuo A; Fujita H
    BMC Cardiovasc Disord; 2016 Nov; 16(1):241. PubMed ID: 27894264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EXpansion of stents after intravascular lithoTripsy versus conventional predilatation in CALCified coronary arteries.
    Oomens T; Vos NS; van der Schaaf RJ; Amoroso G; Ewing MM; Patterson MS; Herrman JR; Slagboom T; Vink MA
    Int J Cardiol; 2023 Sep; 386():24-29. PubMed ID: 37178801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictors and incidence of stent edge dissections in patients with type 2 diabetes as determined by optical coherence tomography.
    Reith S; Battermann S; Jaskolka A; Lehmacher W; Hoffmann R; Marx N; Burgmaier M
    Int J Cardiovasc Imaging; 2013 Aug; 29(6):1237-47. PubMed ID: 23558468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic stent recoil in severely calcified coronary artery lesions. A serial optical coherence tomography study.
    Amemiya K; Maehara A; Yamamoto MH; Oyama Y; Igawa W; Ono M; Kido T; Ebara S; Okabe T; Yamashita K; Isomura N; Mintz GS; Ochiai M
    Int J Cardiovasc Imaging; 2020 Sep; 36(9):1617-1626. PubMed ID: 32462449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel predictors of stent under-expansion regarding calcified coronary lesions assessed by optical coherence tomography.
    Ma W; Wang Q; Wang B; Wang C; Niu X; Zhang D; Liu H; Niu X; Liu Y; Guo W; Lu S; Chu Y; Li Y
    Catheter Cardiovasc Interv; 2022 May; 99 Suppl 1():1473-1481. PubMed ID: 35199934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-coated balloon strategy following orbital atherectomy for calcified coronary artery compared with drug-eluting stent: One-year outcomes and optical coherence tomography assessment.
    Mitsui K; Lee T; Miyazaki R; Hara N; Nagamine S; Nakamura T; Terui M; Okata S; Nagase M; Nitta G; Watanabe K; Kaneko M; Nagata Y; Nozato T; Ashikaga T
    Catheter Cardiovasc Interv; 2023 Jul; 102(1):11-17. PubMed ID: 37210618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Orbital Versus Rotational Atherectomy Plaque Modification in Severely Calcified Lesions Assessed by Optical Coherence Tomography.
    Yamamoto MH; Maehara A; Karimi Galougahi K; Mintz GS; Parviz Y; Kim SS; Koyama K; Amemiya K; Kim SY; Ishida M; Losquadro M; Kirtane AJ; Haag E; Sosa FA; Stone GW; Moses JW; Ochiai M; Shlofmitz RA; Ali ZA
    JACC Cardiovasc Interv; 2017 Dec; 10(24):2584-2586. PubMed ID: 29268891
    [No Abstract]   [Full Text] [Related]  

  • 17. Clinical Impact of In-Stent Calcification in Coronary Arteries: Optical Coherence Tomography Study.
    Jinnouchi H; Sakakura K; Taniguchi Y; Yamamoto K; Hatori M; Tsukui T; Kasahara T; Watanabe Y; Seguchi M; Fujita H
    Am J Cardiol; 2024 Mar; 214():115-124. PubMed ID: 38232806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictors of stent strut malapposition in calcified vessels using frequency-domain optical coherence tomography.
    Lindsay AC; Paulo M; Kadriye K; Tejeiro R; Alegría-Barrero E; Chan PH; Foin N; Syrseloudis D; Di Mario C
    J Invasive Cardiol; 2013 Sep; 25(9):429-34. PubMed ID: 23995714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography.
    Wang X; Matsumura M; Mintz GS; Lee T; Zhang W; Cao Y; Fujino A; Lin Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):869-879. PubMed ID: 28797408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Stent Expansion Guided by Optical Coherence Tomography Versus Intravascular Ultrasound: The ILUMIEN II Study (Observational Study of Optical Coherence Tomography [OCT] in Patients Undergoing Fractional Flow Reserve [FFR] and Percutaneous Coronary Intervention).
    Maehara A; Ben-Yehuda O; Ali Z; Wijns W; Bezerra HG; Shite J; Généreux P; Nichols M; Jenkins P; Witzenbichler B; Mintz GS; Stone GW
    JACC Cardiovasc Interv; 2015 Nov; 8(13):1704-14. PubMed ID: 26585621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.