These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37872326)

  • 1. Wicking assisted condenser platform with patterned wettability for space application.
    Thomas TM; Mahapatra PS
    Sci Rep; 2023 Oct; 13(1):18095. PubMed ID: 37872326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling.
    Zamuruyev KO; Schmidt AJ; Borras E; McCartney MM; Schivo M; Kenyon NJ; Delplanque JP; Davis CE
    J Breath Res; 2018 Jun; 12(3):036020. PubMed ID: 29771240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing dropwise condensation through bioinspired wettability patterning.
    Ghosh A; Beaini S; Zhang BJ; Ganguly R; Megaridis CM
    Langmuir; 2014 Nov; 30(43):13103-15. PubMed ID: 25295388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise?
    Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK
    Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Growth and Controlled Coalescence/Self-Removal of Condensate Microdrops on a Spatially Heterogeneously Patterned Superhydrophilic-Superhydrophobic Surface.
    Xing D; Wang R; Wu F; Gao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29946-29952. PubMed ID: 32510195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes.
    Sun J; Wang HS
    Sci Rep; 2017 Aug; 7(1):8633. PubMed ID: 28819170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
    Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN
    Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.
    Zamuruyev KO; Bardaweel HK; Carron CJ; Kenyon NJ; Brand O; Delplanque JP; Davis CE
    Langmuir; 2014 Aug; 30(33):10133-42. PubMed ID: 25073014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Surface Structure Complexity on Interfacial Droplet Behavior of Superhydrophobic Titanium Surfaces for Robust Dropwise Condensation.
    Jeong JU; Ji DY; Lee KY; Hwang W; Lee CH; Kim SJ; Lee JW
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured jumping-droplet thermal rectifier.
    Wang JX; Birbarah P; Docimo D; Yang T; Alleyne AG; Miljkovic N
    Phys Rev E; 2021 Feb; 103(2-1):023110. PubMed ID: 33736084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condensate removal mechanisms in a constrained vapor bubble heat exchanger.
    Zheng L; Wang Y; Wayner PC; Plawsky JL
    Ann N Y Acad Sci; 2002 Oct; 974():274-87. PubMed ID: 12446330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces.
    Hou H; Wu X; Hu Z; Gao S; Wu Y; Lin Y; Dai L; Zou G; Liu L; Yuan Z
    J Colloid Interface Sci; 2023 Nov; 649():290-301. PubMed ID: 37352560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.