These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37872364)
1. Genome-wide epigenetic dynamics during postnatal skeletal muscle growth in Hu sheep. Cao Y; Ai Y; Zhang X; Zhang J; Long X; Zhu Y; Wang L; Gu Q; Han H Commun Biol; 2023 Oct; 6(1):1077. PubMed ID: 37872364 [TBL] [Abstract][Full Text] [Related]
2. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. Fan Y; Liang Y; Deng K; Zhang Z; Zhang G; Zhang Y; Wang F BMC Genomics; 2020 Apr; 21(1):327. PubMed ID: 32349667 [TBL] [Abstract][Full Text] [Related]
3. The Landscape of Accessible Chromatin and Developmental Transcriptome Maps Reveal a Genetic Mechanism of Skeletal Muscle Development in Pigs. Feng L; Si J; Yue J; Zhao M; Qi W; Zhu S; Mo J; Wang L; Lan G; Liang J Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047386 [TBL] [Abstract][Full Text] [Related]
4. Integration of ATAC-Seq and RNA-Seq Analysis to Identify Key Genes in the Longissimus Dorsi Muscle Development of the Tianzhu White Yak. Li J; Chen Z; Bai Y; Wei Y; Guo D; Liu Z; Niu Y; Shi B; Zhang X; Cai Y; Zhao Z; Hu J; Wang J; Liu X; Li S; Zhao F Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203329 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide DNA methylation profiles provide insight into epigenetic regulation of red and white muscle development in Chinese perch Siniperca chuatsi. Pan Y; Chen L; Cheng J; Zhu X; Wu P; Bao L; Chu W; He S; Liang X; Zhang J Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110647. PubMed ID: 34271193 [TBL] [Abstract][Full Text] [Related]
6. Global DNA Methylation, miRNA, and mRNA Profiles in Sheep Skeletal Muscle Promoted by Hybridization. Chen B; Yue Y; Li J; Yuan C; Guo T; Zhang D; Liu J; Yang B; Lu Z J Agric Food Chem; 2023 Oct; 71(41):15398-15406. PubMed ID: 37815113 [TBL] [Abstract][Full Text] [Related]
7. Whole-genome DNA methylation profiling reveals epigenetic signatures in developing muscle in Tan and Hu sheep and their offspring. Yue C; Wang J; Shen Y; Zhang J; Liu J; Xiao A; Liu Y; Eer H; Zhang QE Front Vet Sci; 2023; 10():1186040. PubMed ID: 37388464 [TBL] [Abstract][Full Text] [Related]
8. Callipyge mutation affects gene expression in cis: a potential role for chromatin structure. Murphy SK; Nolan CM; Huang Z; Kucera KS; Freking BA; Smith TP; Leymaster KA; Weidman JR; Jirtle RL Genome Res; 2006 Mar; 16(3):340-6. PubMed ID: 16415109 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Yang Y; Fan X; Yan J; Chen M; Zhu M; Tang Y; Liu S; Tang Z Nucleic Acids Res; 2021 Feb; 49(3):1313-1329. PubMed ID: 33434283 [TBL] [Abstract][Full Text] [Related]
10. Identification of a gene network contributing to hypertrophy in callipyge skeletal muscle. Vuocolo T; Byrne K; White J; McWilliam S; Reverter A; Cockett NE; Tellam RL Physiol Genomics; 2007 Feb; 28(3):253-72. PubMed ID: 17077277 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing. Cai C; Wan P; Wang H; Cai X; Wang J; Chai Z; Wang J; Wang H; Zhang M; Yang N; Wu Z; Zhu J; Yang X; Li Y; Yue B; Dang R; Zhong J Cell Prolif; 2023 Sep; 56(9):e13430. PubMed ID: 36855961 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis revealed differences in gene expression in sheep muscle tissue at different developmental stages. Wan S; Lou M; Zhang S; Li S; Ling Y BMC Genom Data; 2024 Jun; 25(1):54. PubMed ID: 38849746 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Chromatin Accessibility and DNA Methylation to Reveal the Functions of Epigenetic Modifications in Hou M; Wang Q; Zhao R; Cao Y; Zhang J; Sun X; Yu S; Wang K; Chen Y; Zhang Y; Li J Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203492 [TBL] [Abstract][Full Text] [Related]
14. Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Zhou H; Xiang Y; Hu M; Xu Y; Hou Y; Qi X; Fu L; Luan Y; Wang Z; Li X; Zhao Y; Zhao S Cell Death Dis; 2020 Feb; 11(2):148. PubMed ID: 32094347 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Huang YZ; Sun JJ; Zhang LZ; Li CJ; Womack JE; Li ZJ; Lan XY; Lei CZ; Zhang CL; Zhao X; Chen H Sci Rep; 2014 Oct; 4():6546. PubMed ID: 25306978 [TBL] [Abstract][Full Text] [Related]
16. The epigenetic network regulating muscle development and regeneration. Palacios D; Puri PL J Cell Physiol; 2006 Apr; 207(1):1-11. PubMed ID: 16155926 [TBL] [Abstract][Full Text] [Related]
17. Correlation between sheep YAP1 temporal and spatial expression trends and MSTN and MyoG gene expression. Lv XY; Sun W; Su R; Li D; Wang QZ; Musa HH; Chen L; Zhang YF; Wu WZ Genet Mol Res; 2015 Apr; 14(2):3244-56. PubMed ID: 25966090 [TBL] [Abstract][Full Text] [Related]
19. Comparative genome-wide methylation analysis of longissimus dorsi muscles in Yorkshire and Wannanhua pigs. Li XJ; Liu LQ; Dong H; Yang JJ; Wang WW; Zhang Q; Wang CL; Zhou J; Chen HQ Anim Genet; 2021 Feb; 52(1):78-89. PubMed ID: 33301219 [TBL] [Abstract][Full Text] [Related]
20. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Ruggeri E; Lira-Albarrán S; Grow EJ; Liu X; Harner R; Maltepe E; Ramalho-Santos M; Donjacour A; Rinaudo P Mol Hum Reprod; 2020 Nov; 26(11):866-878. PubMed ID: 33010164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]