These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37872385)

  • 1. Machine learning approach to monitor inkjet jetting status based on the piezo self-sensing.
    Phung TH; Park SH; Kim I; Lee TM; Kwon KS
    Sci Rep; 2023 Oct; 13(1):18089. PubMed ID: 37872385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-Learning-Based Microfluidic Droplet Classification for Multijet Monitoring.
    Choi E; An K; Kang KT
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15576-15586. PubMed ID: 35315636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Characteristic Analysis of a MEMS Piezo-Driven Recirculating Inkjet Printhead Using Lumped Element Modeling.
    Shah MA; Lee DG; Hur S
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31698843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications.
    Shin DY; Kim M
    Rev Sci Instrum; 2017 Feb; 88(2):025109. PubMed ID: 28249472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing.
    Xiao X; Li G; Liu T; Gu M
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inkjet vision measurement technique for high-frequency jetting.
    Kwon KS; Jang MH; Park HY; Ko HS
    Rev Sci Instrum; 2014 Jun; 85(6):065101. PubMed ID: 24985846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting pharmaceutical inkjet printing outcomes using machine learning.
    Carou-Senra P; Ong JJ; Castro BM; Seoane-Viaño I; Rodríguez-Pombo L; Cabalar P; Alvarez-Lorenzo C; Basit AW; Pérez G; Goyanes A
    Int J Pharm X; 2023 Dec; 5():100181. PubMed ID: 37143957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The design of an inkjet drive waveform using machine learning.
    Kim S; Cho M; Jung S
    Sci Rep; 2022 Mar; 12(1):4841. PubMed ID: 35318348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-adaptability nozzle-array printing system based on a set covering printing planning model for printed display manufacturing.
    Wang Y; Chen J; Yin Z; Li Y
    Sci Rep; 2023 Jan; 13(1):156. PubMed ID: 36599856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop-on-demand inkjet-based cell printing with 30-
    Kim YK; Park JA; Yoon WH; Kim J; Jung S
    Biomicrofluidics; 2016 Nov; 10(6):064110. PubMed ID: 27990212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Liposomes Survive Inkjet Printing? The Effect of Jetting on Key Liposome Attributes for Drug Delivery Applications.
    Alva C; Vidakovic I; Lorber B; Schachner-Nedherer AL; Zettl M; Khinast J; Prassl R; Hsiao WK
    J Pharm Innov; 2022 May; ():1-9. PubMed ID: 35646193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of inkjet first-drop behavior using a high-speed camera.
    Kwon KS; Kim HS; Choi M
    Rev Sci Instrum; 2016 Mar; 87(3):035101. PubMed ID: 27036813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to manipulate droplet jetting from needle type jet dispensers.
    Phung TH; Kwon KS
    Sci Rep; 2019 Dec; 9(1):19669. PubMed ID: 31873178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding droplet jetting on varying substrate for biological applications.
    Lee JM; Huang X; Goh GL; Tran T; Yeong WY
    Int J Bioprint; 2023; 9(5):758. PubMed ID: 37457927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inkjet-Printed Silver Nanowire Ink for Flexible Transparent Conductive Film Applications.
    Wang S; Wu X; Lu J; Luo Z; Xie H; Zhang X; Lin K; Wang Y
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-based 3D inkjet printing of an oral pharmaceutical dosage form.
    Cader HK; Rance GA; Alexander MR; Gonçalves AD; Roberts CJ; Tuck CJ; Wildman RD
    Int J Pharm; 2019 Jun; 564():359-368. PubMed ID: 30978485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a Hemispherical Chamber for Thermal Inkjet Printing.
    Peng X; Lu A; Li P; Chen Z; Yu Z; Lin J; Wang Y; Zhao Y; Yang J; Cheng J
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers.
    Einat M
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R; Lejay M; Fan JZ; Choi MJ; Kinge S; Hoogland S; Fabritius T; García de Arquer FP; Sargent EH
    ACS Nano; 2019 Oct; 13(10):11988-11995. PubMed ID: 31545597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.