These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37872633)

  • 41. Comparison of different algorithms based on TKEO for EMG change point detection.
    Wang S; Zhu S; Shang Z
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35697015
    [No Abstract]   [Full Text] [Related]  

  • 42. EMG differences between concentric and eccentric maximum voluntary contractions are evident prior to movement onset.
    Grabiner MD; Owings TM
    Exp Brain Res; 2002 Aug; 145(4):505-11. PubMed ID: 12172662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Differentiable Dynamic Model for Musculoskeletal Simulation and Exoskeleton Control.
    Kuo CH; Chen JW; Yang Y; Lan YH; Lu SW; Wang CF; Lo YC; Lin CL; Lin SH; Chen PC; Chen YY
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Dwivedi A; Kwon Y; McDaid AJ; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2205-2215. PubMed ID: 31443034
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors.
    Li X; Shin H; Zhou P; Niu X; Liu J; Rymer WZ
    Clin Neurophysiol; 2014 May; 125(5):988-94. PubMed ID: 24268816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EMG-Based Control in a Test Platform for Exoskeleton with One Degree of Freedom.
    Suplino LO; Sommer LF; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5366-5369. PubMed ID: 31947068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation and application of EMG amplitude during dynamic contractions.
    Clancy EA; Bouchard S; Rancourt D
    IEEE Eng Med Biol Mag; 2001; 20(6):47-54. PubMed ID: 11838258
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification.
    Lara JE; Cheng LK; Rohrle O; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2022 May; 69(5):1758-1766. PubMed ID: 34847014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Semi-automated Detection of the Timing of Respiratory Muscle Activity: Validation and First Application.
    Rodrigues A; Janssens L; Langer D; Matsumura U; Rozenberg D; Brochard L; Reid WD
    Front Physiol; 2021; 12():794598. PubMed ID: 35046839
    [No Abstract]   [Full Text] [Related]  

  • 53. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses.
    Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G
    Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection.
    Li X; Zhou P; Aruin AS
    Ann Biomed Eng; 2007 Sep; 35(9):1532-8. PubMed ID: 17473984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Grasp force estimation from the transient EMG using high-density surface recordings.
    Martinez IJR; Mannini A; Clemente F; Sabatini AM; Cipriani C
    J Neural Eng; 2020 Feb; 17(1):016052. PubMed ID: 31899898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Attention-Based Deep Recurrent Neural Network to Estimate Knee Angle During Walking from Lower-Limb EMG.
    Abdelhady M; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study.
    Cesqui B; Tropea P; Micera S; Krebs HI
    J Neuroeng Rehabil; 2013 Jul; 10():75. PubMed ID: 23855907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Feasibility Study of a Leg-exoskeleton Assistive Wheelchair Robot with Tests on Gluteus Medius Muscles.
    Huang G; Ceccarelli M; Huang Q; Zhang W; Yu Z; Chen X; Mai J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.