These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37873097)

  • 1. Separation of sticker-spacer energetics governs the coalescence of metastable biomolecular condensates.
    Chattaraj A; Shakhnovich EI
    bioRxiv; 2024 Jul; ():. PubMed ID: 37873097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic metastable long-living droplets formed by sticker-spacer proteins.
    Ranganathan S; Shakhnovich EI
    Elife; 2020 Jun; 9():. PubMed ID: 32484438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preserving condensate structure and composition by lowering sequence complexity.
    Sood A; Zhang B
    Biophys J; 2024 Jul; 123(13):1815-1826. PubMed ID: 38824391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates.
    Garaizar A; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Sci Rep; 2022 Mar; 12(1):4390. PubMed ID: 35293386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of protein condensates in weak-binding regime.
    Xiang YX; Shan Y; Lei QL; Ren CL; Ma YQ
    Phys Rev E; 2022 Oct; 106(4-1):044403. PubMed ID: 36397514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial exchange dynamics of biomolecular condensates are highly sensitive to client interactions.
    Rana U; Wingreen NS; Brangwynne CP; Panagiotopoulos AZ
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38591689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preserving condensate structure and composition by lowering sequence complexity.
    Sood A; Zhang B
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially non-uniform condensates emerge from dynamically arrested phase separation.
    Erkamp NA; Sneideris T; Ausserwöger H; Qian D; Qamar S; Nixon-Abell J; St George-Hyslop P; Schmit JD; Weitz DA; Knowles TPJ
    Nat Commun; 2023 Feb; 14(1):684. PubMed ID: 36755024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.
    Alshareedah I; Borcherds WM; Cohen SR; Singh A; Posey AE; Farag M; Bremer A; Strout GW; Tomares DT; Pappu RV; Mittag T; Banerjee PR
    bioRxiv; 2023 Dec; ():. PubMed ID: 37066350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linker protein from a red-type pyrenoid phase separates with Rubisco via oligomerizing sticker motifs.
    Oh ZG; Ang WSL; Poh CW; Lai SK; Sze SK; Li HY; Bhushan S; Wunder T; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2304833120. PubMed ID: 37311001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricting the sizes of condensates.
    Dar F; Pappu R
    Elife; 2020 Jul; 9():. PubMed ID: 32662769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates.
    Shi G; Schweizer KS
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37489654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sticker-and-spacer model for amyloid beta condensation and fibrillation.
    Connor JP; Quinn SD; Schaefer C
    Front Mol Neurosci; 2022; 15():962526. PubMed ID: 36311031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy.
    Alshareedah I; Banerjee PR
    Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.