These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37873726)

  • 1. Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC).
    Czech H; Popovicheva O; Chernov DG; Kozlov A; Schneider E; Shmargunov VP; Sueur M; Rüger CP; Afonso C; Uzhegov V; Kozlov VS; Panchenko MV; Zimmermann R
    Environ Sci Process Impacts; 2024 Jan; 26(1):35-55. PubMed ID: 37873726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions.
    Farley R; Bernays N; Jaffe DA; Ketcherside D; Hu L; Zhou S; Collier S; Zhang Q
    Environ Sci Technol; 2022 Mar; 56(6):3645-3657. PubMed ID: 35229595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes.
    Palm BB; Peng Q; Fredrickson CD; Lee BH; Garofalo LA; Pothier MA; Kreidenweis SM; Farmer DK; Pokhrel RP; Shen Y; Murphy SM; Permar W; Hu L; Campos TL; Hall SR; Ullmann K; Zhang X; Flocke F; Fischer EV; Thornton JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29469-29477. PubMed ID: 33148807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and Acellular Assays for Measuring Oxidative Stress Induced by Ambient and Laboratory-Generated Aerosols.
    Ng NL; Tuet WY; Chen Y; Fok S; Gao D; Tagle Rodriguez MS; Klein M; Grosberg A; Weber RJ; Champion JA
    Res Rep Health Eff Inst; 2019 Mar; 2019(197):1-57. PubMed ID: 31872749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging effects on residential biomass burning emissions under quasi-real atmospheric conditions.
    Li S; Liu D; Wu Y; Hu K; Jiang X; Tian P; Sheng J; Pan B; Zhao D
    Environ Pollut; 2023 Nov; 337():122615. PubMed ID: 37757938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol.
    Kodros JK; Papanastasiou DK; Paglione M; Masiol M; Squizzato S; Florou K; Skyllakou K; Kaltsonoudis C; Nenes A; Pandis SN
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33028-33033. PubMed ID: 33318218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range transported North American wildfire aerosols observed in marine boundary layer of eastern North Atlantic.
    Zheng G; Sedlacek AJ; Aiken AC; Feng Y; Watson TB; Raveh-Rubin S; Uin J; Lewis ER; Wang J
    Environ Int; 2020 Jun; 139():105680. PubMed ID: 32272293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke.
    Peng Q; Palm BB; Melander KE; Lee BH; Hall SR; Ullmann K; Campos T; Weinheimer AJ; Apel EC; Hornbrook RS; Hills AJ; Montzka DD; Flocke F; Hu L; Permar W; Wielgasz C; Lindaas J; Pollack IB; Fischer EV; Bertram TH; Thornton JA
    Environ Sci Technol; 2020 May; 54(10):5954-5963. PubMed ID: 32294377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM
    Chow JC; Watson JG; Green MC; Wang X; Chen LA; Trimble DL; Cropper PM; Kohl SD; Gronstal SB
    J Air Waste Manag Assoc; 2018 May; 68(5):494-510. PubMed ID: 29341854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.
    Collier S; Zhou S; Onasch TB; Jaffe DA; Kleinman L; Sedlacek AJ; Briggs NL; Hee J; Fortner E; Shilling JE; Worsnop D; Yokelson RJ; Parworth C; Ge X; Xu J; Butterfield Z; Chand D; Dubey MK; Pekour MS; Springston S; Zhang Q
    Environ Sci Technol; 2016 Aug; 50(16):8613-22. PubMed ID: 27398804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brown carbon absorption and radiative effects under intense residential wood burning conditions in Southeastern Europe: New insights into the abundance and absorptivity of methanol-soluble organic aerosols.
    Paraskevopoulou D; Kaskaoutis DG; Grivas G; Bikkina S; Tsagkaraki M; Vrettou IM; Tavernaraki K; Papoutsidaki K; Stavroulas I; Liakakou E; Bougiatioti A; Oikonomou K; Gerasopoulos E; Mihalopoulos N
    Sci Total Environ; 2023 Feb; 860():160434. PubMed ID: 36427708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies.
    Hodshire AL; Akherati A; Alvarado MJ; Brown-Steiner B; Jathar SH; Jimenez JL; Kreidenweis SM; Lonsdale CR; Onasch TB; Ortega AM; Pierce JR
    Environ Sci Technol; 2019 Sep; 53(17):10007-10022. PubMed ID: 31365241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a smog chamber for studying formation of gas-phase products and secondary organic aerosol.
    Yuan Q; Zhang Z; Wang M; Ho KF; Wang T; Lee S
    J Environ Sci (China); 2024 Feb; 136():570-582. PubMed ID: 37923466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial and wildfire aerosol pollution over world heritage Lake Baikal.
    Popovicheva O; Molozhnikova E; Nasonov S; Potemkin V; Penner I; Klemasheva M; Marinaite I; Golobokova L; Vratolis S; Eleftheriadis K; Khodzher T
    J Environ Sci (China); 2021 Sep; 107():49-64. PubMed ID: 34412787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.
    Martinsson J; Eriksson AC; Nielsen IE; Malmborg VB; Ahlberg E; Andersen C; Lindgren R; Nyström R; Nordin EZ; Brune WH; Svenningsson B; Swietlicki E; Boman C; Pagels JH
    Environ Sci Technol; 2015 Dec; 49(24):14663-71. PubMed ID: 26561964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China.
    Wang D; Zhou B; Fu Q; Zhao Q; Zhang Q; Chen J; Yang X; Duan Y; Li J
    Sci Total Environ; 2016 Nov; 571():1454-66. PubMed ID: 27418517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain.
    Wang J; Wang G; Wu C; Li J; Cao C; Li J; Xie Y; Ge S; Chen J; Zeng L; Zhu T; Zhang R; Kawamura K
    Environ Pollut; 2020 Jan; 256():113401. PubMed ID: 31753639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols.
    Iinuma Y; Böge O; Gräfe R; Herrmann H
    Environ Sci Technol; 2010 Nov; 44(22):8453-9. PubMed ID: 20964362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.