BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37873963)

  • 1. Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts.
    Lv W; Deng J; Wu D; He B; Tang G; Ma D; Jia Y; Lv P
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37873963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts.
    Wang Y; Wu D; Lv P; He B; Li X; Ma D; Jia Y
    Nanoscale; 2022 Aug; 14(30):10862-10872. PubMed ID: 35843116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study.
    Wu J; Wu D; Li H; Song Y; Lv W; Yu X; Ma D
    Nanoscale; 2023 Oct; 15(39):16056-16067. PubMed ID: 37728053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring an Fe Dimer on Nitrogen-Doped Graphene toward Highly Efficient Electrocatalytic Ammonia Synthesis.
    Zhang Z; Huang X; Xu H
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43632-43640. PubMed ID: 34460221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-Metal Interaction with a Threshold Effect in NiCu Dual-Atom Catalysts for CO
    Yao D; Tang C; Zhi X; Johannessen B; Slattery A; Chern S; Qiao SZ
    Adv Mater; 2023 Mar; 35(11):e2209386. PubMed ID: 36433641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic nitrogen reduction on the transition-metal dimer anchored N-doped graphene: performance prediction and synergetic effect.
    Ma D; Wang Y; Liu L; Jia Y
    Phys Chem Chem Phys; 2021 Feb; 23(6):4018-4029. PubMed ID: 33554989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating the Critical Intermediates of Dual-Atom Catalysts for CO
    Zhang M; Zhou D; Mu X; Wang D; Liu S; Dai Z
    Small; 2024 May; ():e2402050. PubMed ID: 38801298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia.
    Mou T; Wang Y; Deák P; Li H; Long J; Fu X; Zhang B; Frauenheim T; Xiao J
    J Phys Chem Lett; 2022 Oct; 13(42):9919-9927. PubMed ID: 36256962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating the Electronic Structures of Dual-Atom Catalysts via Coordination Environment Engineering for Boosting CO
    Gong YN; Cao CY; Shi WJ; Zhang JH; Deng JH; Lu TB; Zhong DC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202215187. PubMed ID: 36316808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance-Backdonation.
    Liu J; Xu H; Zhu J; Cheng D
    JACS Au; 2023 Nov; 3(11):3031-3044. PubMed ID: 38034973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis.
    Zhong W; Chen D; Wu Y; Yue J; Shen Z; Huang H; Wang Y; Li X; Lang JP; Xia Q; Cao Y
    J Colloid Interface Sci; 2024 Feb; 655():80-89. PubMed ID: 37925971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Atom Catalysts and Dual-Atom Catalysts for CO
    Shao Y; Yuan Q; Zhou J
    Small; 2023 Oct; 19(40):e2303446. PubMed ID: 37267928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ce-doped copper oxide and copper vanadate Cu
    Zhang M; Liu Y; Duan Y; Liu X; Wang YQ
    J Colloid Interface Sci; 2024 Oct; 671():258-269. PubMed ID: 38810340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si
    Guo W; Zhao T; Li F; Cai Q; Zhao J
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts.
    Wei B; Fu Z; Legut D; Germann TC; Du S; Zhang H; Francisco JS; Zhang R
    Adv Mater; 2021 Oct; 33(40):e2102595. PubMed ID: 34342921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity.
    Yang W; Jia Z; Zhou B; Wei L; Gao Z; Li H
    Commun Chem; 2023 Jan; 6(1):6. PubMed ID: 36698039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations.
    Boonpalit K; Wongnongwa Y; Prommin C; Nutanong S; Namuangruk S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12936-12945. PubMed ID: 36746619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A "Pre-Constrained Metal Twins" Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis.
    Liu M; Li N; Cao S; Wang X; Lu X; Kong L; Xu Y; Bu XH
    Adv Mater; 2022 Feb; 34(7):e2107421. PubMed ID: 34862677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Electronic Structure from Spin-State Reconstruction of a Heteronuclear Fe-Co Diatomic Pair to Boost the Fenton-like Reaction.
    Zhao Z; Hu M; Nie T; Zhou W; Pan B; Xing B; Zhu L
    Environ Sci Technol; 2023 Mar; 57(11):4556-4567. PubMed ID: 36894515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis.
    Lei L; Guo X; Han X; Fei L; Guo X; Wang DG
    Adv Mater; 2024 Feb; ():e2311434. PubMed ID: 38377407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.