These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37873963)

  • 21. Descriptor-Driven Computational Design of Bifunctional Double-Atom Hydrogen Evolution and Oxidation Reaction Electrocatalysts for Rechargeable Hydrogen Gas Batteries.
    Liu Z; Yang J; Wang F; Yuan Y; Jiang T; Zhu Z; Li K; Liu S; Zhang K; Wang W; Chuai M; Sun J; Wu Y; Chen W
    Nano Lett; 2022 Oct; 22(19):7860-7866. PubMed ID: 36166748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bottom-Up Synthesis of Platinum Dual-Atom Catalysts on Cerium Oxide.
    Mekkering MJ; Laan PCM; Troglia A; Bliem R; Kizilkaya AC; Rothenberg G; Yan N
    ACS Catal; 2024 Jul; 14(13):9850-9859. PubMed ID: 38988652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction.
    Sun L; Dai C; Wang T; Jin X; Xu ZJ; Wang X
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202320027. PubMed ID: 38317616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Dual-Atom Site Catalysts for Efficient Oxygen and Carbon Dioxide Electrocatalysis.
    An Q; Jiang J; Cheng W; Su H; Jiang Y; Liu Q
    Small Methods; 2022 Jul; 6(7):e2200408. PubMed ID: 35607754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reasonable Design of MXene-Supported Dual-Atom Catalysts with High Catalytic Activity for Hydrogen Evolution and Oxygen Evolution Reaction: A First-Principles Investigation.
    Wang E; Guo M; Zhou J; Sun Z
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic Effect of Active Sites of Double-Atom Catalysts for Nitrogen Reduction Reaction.
    Sun CN; Wang ZL; Lang XY; Wen Z; Jiang Q
    ChemSusChem; 2021 Oct; 14(20):4593-4600. PubMed ID: 34418314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of transition metal d-orbitals in single-atom catalysts for nitric oxide electroreduction to ammonia.
    Kong L; Liang X; Wang M; Lawrence Wu CM
    J Colloid Interface Sci; 2023 Oct; 647():375-383. PubMed ID: 37269734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimetallic synergistic catalysts based on two-dimensional carbon-rich conjugated frameworks for nitrate electrocatalytic reduction to ammonia: catalyst screening and mechanism insights.
    Luo F; Guo L
    Nanotechnology; 2024 Jan; 35(12):. PubMed ID: 38100833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the Stability and Hydrogen Evolution Activity of Dual-Atom Catalysts on Nitrogen-Doped Graphene.
    Zhou Q; Zhang M; Zhu B; Gao Y
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double boron atom-doped graphdiynes as efficient metal-free electrocatalysts for nitrogen reduction into ammonia: a first-principles study.
    Fu C; Li Y; Wei H
    Phys Chem Chem Phys; 2021 Aug; 23(32):17683-17692. PubMed ID: 34373884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive Mechanism for CO Electroreduction on Dual-Atom-Catalyst-Anchored N-Doped Graphene.
    Liu D; Zhao J; Kong Y; Ai H; Bai H; Leong CC; Lo KH; Wang S; Ip WF; Lin S; Pan H
    Chemphyschem; 2023 Jun; 24(11):e202200937. PubMed ID: 36849705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Transition-Metal-Based Dual-Atom Oxygen Electrocatalysts.
    He Y; Zhou X; Jia Y; Li H; Wang Y; Liu Y; Tan Q
    Small; 2023 Sep; 19(37):e2206477. PubMed ID: 37147778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cu
    Liu Y; Yao XM; Liu X; Liu Z; Wang YQ
    Inorg Chem; 2023 May; 62(19):7525-7532. PubMed ID: 37133541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis.
    Chen Y; Lin J; Pan Q; Liu X; Ma T; Wang X
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202306469. PubMed ID: 37312248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts.
    Wu Y; He C; Zhang W
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47520-47529. PubMed ID: 34585912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Ni foam catalysts for sustainable nitrate to ammonia electroreduction.
    Iarchuk A; Dutta A; Broekmann P
    J Hazard Mater; 2022 Oct; 439():129504. PubMed ID: 36104893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Supported Pd
    Zhang N; Zhang X; Kang Y; Ye C; Jin R; Yan H; Lin R; Yang J; Xu Q; Wang Y; Zhang Q; Gu L; Liu L; Song W; Liu J; Wang D; Li Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13388-13393. PubMed ID: 33817923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination Symmetry Breaking of Single-Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia.
    Cheng XF; He JH; Ji HQ; Zhang HY; Cao Q; Sun WJ; Yan CL; Lu JM
    Adv Mater; 2022 Sep; 34(36):e2205767. PubMed ID: 35841127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition-Metal Borides (MBenes) as New High-Efficiency Catalysts for Nitric Oxide Electroreduction to Ammonia by a High-Throughput Approach.
    Xiao Y; Shen C
    Small; 2021 Jun; 17(24):e2100776. PubMed ID: 33983676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption.
    Wang Y; Xu A; Wang Z; Huang L; Li J; Li F; Wicks J; Luo M; Nam DH; Tan CS; Ding Y; Wu J; Lum Y; Dinh CT; Sinton D; Zheng G; Sargent EH
    J Am Chem Soc; 2020 Mar; 142(12):5702-5708. PubMed ID: 32118414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.