These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37873978)

  • 1. Proteolytic signaling in cancer.
    Salardani M; Barcick U; Zelanis A
    Expert Rev Proteomics; 2023; 20(12):345-355. PubMed ID: 37873978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment.
    Greening DW; Kapp EA; Ji H; Speed TP; Simpson RJ
    Biochim Biophys Acta; 2013 Nov; 1834(11):2396-407. PubMed ID: 23684732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification.
    Klein T; Eckhard U; Dufour A; Solis N; Overall CM
    Chem Rev; 2018 Feb; 118(3):1137-1168. PubMed ID: 29265812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome.
    Doucet A; Butler GS; Rodríguez D; Prudova A; Overall CM
    Mol Cell Proteomics; 2008 Oct; 7(10):1925-51. PubMed ID: 18596063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional proteomics: is the technology ready to study clinical cohorts?
    Lange PF; Schilling O; Huesgen PF
    Expert Rev Proteomics; 2023; 20(12):309-318. PubMed ID: 37869791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring proteolytic processing events by quantitative mass spectrometry.
    Coradin M; Karch KR; Garcia BA
    Expert Rev Proteomics; 2017 May; 14(5):409-418. PubMed ID: 28395554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic profiling of the proteolytic events in the secretome of the transformed phenotype of melanocyte-derived cells using Terminal Amine Isotopic Labeling of Substrates.
    Liberato T; Fukushima I; Kitano ES; Serrano SMT; Chammas R; Zelanis A
    J Proteomics; 2019 Feb; 192():291-298. PubMed ID: 30267877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradomics in Biomarker Discovery.
    Grozdanić M; Vidmar R; Vizovišek M; Fonović M
    Proteomics Clin Appl; 2019 Nov; 13(6):e1800138. PubMed ID: 31291060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein TAILS: when termini tell tales of proteolysis and function.
    Lange PF; Overall CM
    Curr Opin Chem Biol; 2013 Feb; 17(1):73-82. PubMed ID: 23298954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pep2Graph: A standalone tool to analyse proteolytic cleavages by proteases from gel-based mass spectrometry data.
    Gummadi S; Kang T; Fonseka P; Chitti SV; Ang CS; Mathivanan S
    Proteomics; 2022 Nov; 22(22):e2200147. PubMed ID: 35924633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Structural Susceptibility of Proteins to Proteolytic Processing.
    Matveev EV; Safronov VV; Ponomarev GV; Kazanov MD
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease.
    Huesgen PF; Lange PF; Overall CM
    Proteomics Clin Appl; 2014 Jun; 8(5-6):338-50. PubMed ID: 24497460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Adhesion GPCR Function Through Proteolytic Processing.
    Nieberler M; Kittel RJ; Petrenko AG; Lin HH; Langenhan T
    Handb Exp Pharmacol; 2016; 234():83-109. PubMed ID: 27832485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global mapping of the topography and magnitude of proteolytic events in apoptosis.
    Dix MM; Simon GM; Cravatt BF
    Cell; 2008 Aug; 134(4):679-91. PubMed ID: 18724940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates.
    Sabino F; Hermes O; Egli FE; Kockmann T; Schlage P; Croizat P; Kizhakkedathu JN; Smola H; auf dem Keller U
    Mol Cell Proteomics; 2015 Feb; 14(2):354-70. PubMed ID: 25516628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.