These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 37874179)

  • 21. The synthesis of single-atom catalysts for heterogeneous catalysis.
    Fang J; Chen Q; Li Z; Mao J; Li Y
    Chem Commun (Camb); 2023 Mar; 59(20):2854-2868. PubMed ID: 36752217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts.
    Jeong H; Shin S; Lee H
    ACS Nano; 2020 Nov; 14(11):14355-14374. PubMed ID: 33140947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-atom site catalysts for environmental remediation: Recent advances.
    Cai T; Teng Z; Wen Y; Zhang H; Wang S; Fu X; Song L; Li M; Lv J; Zeng Q
    J Hazard Mater; 2022 Oct; 440():129772. PubMed ID: 35988491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomically Dispersed Metal Catalysts for the Conversion of CO
    Yang Q; Liu H; Lin Y; Su D; Tang Y; Chen L
    Adv Mater; 2024 Sep; 36(37):e2310912. PubMed ID: 38762777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-based material-supported single-atom catalysts for energy conversion.
    Zhang H; Liu W; Cao D; Cheng D
    iScience; 2022 Jun; 25(6):104367. PubMed ID: 35620439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gas-phase hydrogenation of furfural into value-added chemicals: The critical role of metal-based catalysts.
    Vikrant K; Kim KH
    Sci Total Environ; 2023 Dec; 904():166882. PubMed ID: 37678523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis.
    Guo W; Wang Z; Wang X; Wu Y
    Adv Mater; 2021 Aug; 33(34):e2004287. PubMed ID: 34235782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Hydrodeoxygenation of Aromatics to Cyclohexanols over Ru Single Atoms Supported on CeO
    Zhang K; Meng Q; Wu H; Yan J; Mei X; An P; Zheng L; Zhang J; He M; Han B
    J Am Chem Soc; 2022 Nov; 144(45):20834-20846. PubMed ID: 36332192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals.
    Jin X; Fang T; Wang J; Liu M; Pan S; Subramaniam B; Shen J; Yang C; Chaudhari RV
    Chem Rec; 2019 Sep; 19(9):1952-1994. PubMed ID: 30474917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Durable Heterogeneous Atomic Catalysts.
    Shin S; Haaring R; So J; Choi Y; Lee H
    Acc Chem Res; 2022 May; 55(10):1372-1382. PubMed ID: 35230801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.
    Wang Y; Sun J; Tsubaki N
    Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging single-atom iron catalysts for advanced catalytic systems.
    Chang B; Wu S; Wang Y; Sun T; Cheng Z
    Nanoscale Horiz; 2022 Oct; 7(11):1340-1387. PubMed ID: 36097878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive Upgrading of Biomass-Based Levulinic Acid to γ-Valerolactone Over Ru-Based Single-Atom Catalysts.
    Meng Y; Jian Y; Chen D; Huang J; Zhang H; Li H
    Front Chem; 2022; 10():895198. PubMed ID: 35433635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions.
    Zhao Y; Jiang WJ; Zhang J; Lovell EC; Amal R; Han Z; Lu X
    Adv Mater; 2021 Oct; 33(41):e2102801. PubMed ID: 34477254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-atom catalysts for catalytic benzene oxidation to phenol: recent progress and future perspectives.
    Zhao Y; Cao H; Tao L; Qiao Z; Ding C
    Dalton Trans; 2023 May; 52(17):5399-5417. PubMed ID: 37014653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production.
    Deng Y; Guo Y; Jia Z; Liu JC; Guo J; Cai X; Dong C; Wang M; Li C; Diao J; Jiang Z; Xie J; Wang N; Xiao H; Xu B; Zhang H; Liu H; Li J; Ma D
    J Am Chem Soc; 2022 Mar; 144(8):3535-3542. PubMed ID: 35107999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni
    Meng G; Ji K; Zhang W; Kang Y; Wang Y; Zhang P; Wang YG; Li J; Cui T; Sun X; Tan T; Wang D; Li Y
    Chem Sci; 2021 Jan; 12(11):4139-4146. PubMed ID: 34163686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.