BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37874498)

  • 1. The first direct measurements of ventilatory flow and oxygen utilization after exhaustive exercise and voluntary feeding in a teleost fish, Oncorhynchus mykiss.
    Eom J; Wood CM
    Fish Physiol Biochem; 2023 Dec; 49(6):1129-1149. PubMed ID: 37874498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normoxic limitation of maximal oxygen consumption rate, aerobic scope and cardiac performance in exhaustively exercised rainbow trout (Oncorhynchus mykiss).
    McArley TJ; Morgenroth D; Zena LA; Ekström AT; Sandblom E
    J Exp Biol; 2021 Aug; 224(15):. PubMed ID: 34323276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring maximum oxygen uptake with an incremental swimming test and by chasing rainbow trout to exhaustion inside a respirometry chamber yields the same results.
    Zhang Y; Gilbert MJH; Farrell AP
    J Fish Biol; 2020 Jul; 97(1):28-38. PubMed ID: 32154581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse translation: effects of acclimation temperature and acute temperature challenges on oxygen consumption, diffusive water flux, net sodium loss rates, Q
    Onukwufor JO; Wood CM
    J Comp Physiol B; 2020 Mar; 190(2):205-217. PubMed ID: 31965230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hypoxia on specific dynamic action and postprandial cardiovascular physiology in rainbow trout (Oncorhynchus mykiss).
    Eliason EJ; Farrell AP
    Comp Biochem Physiol A Mol Integr Physiol; 2014 May; 171():44-50. PubMed ID: 24534150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exhaustive exercise does not affect the preferred temperature for recovery in juvenile rainbow trout (Oncorhynchus mykiss).
    Clutterham S; Gamperl AK; Wallace HL; Crawshaw LI; Farrell AP
    Physiol Biochem Zool; 2004; 77(4):611-8. PubMed ID: 15449232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid-base and ion regulatory disturbances.
    Cooper CA; Wilson RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2542-50. PubMed ID: 18626090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is ammonia excretion affected by gill ventilation in the rainbow trout Oncorhynchus mykiss?
    Eom J; Fehsenfeld S; Wood CM
    Respir Physiol Neurobiol; 2020 Apr; 275():103385. PubMed ID: 31931176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss).
    Alsop D; Wood C
    J Exp Biol; 1997; 200(Pt 17):2337-46. PubMed ID: 9320259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss.
    Jain KE; Farrell AP
    J Exp Biol; 2003 Oct; 206(Pt 20):3569-79. PubMed ID: 12966048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxygen debt hypothesis in juvenile rainbow trout after exhaustive exercise.
    Scarabello M; Heigenhauser GJ; Wood CM
    Respir Physiol; 1991 May; 84(2):245-59. PubMed ID: 1876762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The osmorespiratory compromise in rainbow trout (Oncorhynchus mykiss): The effects of fish size, hypoxia, temperature and strenuous exercise on gill diffusive water fluxes and sodium net loss rates.
    Onukwufor JO; Wood CM
    Comp Biochem Physiol A Mol Integr Physiol; 2018 May; 219-220():10-18. PubMed ID: 29454143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding ventilation and oxygen uptake of Pacific hagfish (Eptatretus stoutii), with particular emphasis on responses to ammonia and interactions with other respiratory gases.
    Eom J; Wood CM
    J Comp Physiol B; 2021 Mar; 191(2):255-271. PubMed ID: 33547930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acute increase in water temperature can decrease the swimming performance and energy utilization efficiency in rainbow trout (Oncorhynchus mykiss).
    Yin L; Chen L; Wang M; Li H; Yu X
    Fish Physiol Biochem; 2021 Feb; 47(1):109-120. PubMed ID: 33211244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon.
    Pane EF; Haque A; Wood CM
    Aquat Toxicol; 2004 Jul; 69(1):11-24. PubMed ID: 15210294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia as a stimulant to ventilation in rainbow trout Oncorhynchus mykiss.
    Zhang L; Wood CM
    Respir Physiol Neurobiol; 2009 Sep; 168(3):261-71. PubMed ID: 19619676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotid chemoreceptor function in ventilatory and circulatory O2 convection of exercising dogs at low and high altitude.
    Bouverot P; Collin R; Favier R; Flandrois R; Sébert P
    Respir Physiol; 1981 Feb; 43(2):147-67. PubMed ID: 6787682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in metabolic response to Loma salmonae infection in juvenile rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis.
    Powell MD; Speare DJ; Daley J; Lovy J
    Dis Aquat Organ; 2005 Nov; 67(3):233-7. PubMed ID: 16408839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout.
    Bucking C; Wood CM
    J Exp Biol; 2008 Aug; 211(Pt 15):2533-41. PubMed ID: 18626089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of red blood cell metabolism in rainbow trout after exhaustive exercise.
    Wood CM; Walsh PJ; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():491-507. PubMed ID: 2126030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.