BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37874762)

  • 1. Naphthalene Diimide-Based Orange Emitting Luminogen: A Fluorometric Probe for Thiol Sensing through the Click Reaction.
    Roy K; Ghosh AK; Das PK
    Langmuir; 2023 Nov; 39(44):15690-15704. PubMed ID: 37874762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nipecotic-Acid-Tethered, Naphthalene-Diimide-Based, Orange-Emitting Organic Nanoparticles as Targeted Delivery Vehicle and Diagnostic Probe toward GABA
    Ghosh AK; Chowdhury M; Kumar Das P
    ACS Appl Bio Mater; 2021 Oct; 4(10):7563-7577. PubMed ID: 35006693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Orange-Emitting Organic Nanoparticle-Protamine Conjugate: Fluorimetric Sensor of Heparin.
    Ghosh AK; Choudhury P; Das PK
    Langmuir; 2019 Nov; 35(47):15180-15191. PubMed ID: 31663343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthalimide-Based AIEgens for Sensing Protein Disulfide Isomerase through Thiol-Disulfide Redox Exchange.
    Ghosh AK; Khan AH; Das PK
    Anal Chem; 2023 Sep; 95(36):13638-13648. PubMed ID: 37651212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Dots-Stimulated Amplification of Aggregation-Induced Emission of Size-Tunable Organic Nanoparticles.
    Choudhury P; Das PK
    Langmuir; 2019 Aug; 35(32):10582-10595. PubMed ID: 31329455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naphthalimide based fluorescent organic nanoparticles in selective sensing of Fe
    Sarkar D; Chowdhury M; Das PK
    J Mater Chem B; 2021 Jan; 9(2):494-507. PubMed ID: 33300911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase sensing by naphthalene diimide based fluorescent organic nanoparticles: a solvent induced manifestation of self-assembly.
    Chakraborty D; Sarkar D; Ghosh AK; Das PK
    Soft Matter; 2021 Mar; 17(8):2170-2180. PubMed ID: 33448273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Aggregation-Induced Multicolor Emission of Organic Nanoparticles by Varying the Substituent in Naphthalene Diimide.
    Choudhury P; Sarkar S; Das PK
    Langmuir; 2018 Nov; 34(47):14328-14341. PubMed ID: 30384612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. l-Phenylalanine-Tethered, Naphthalene Diimide-Based, Aggregation-Induced, Green-Emitting Organic Nanoparticles.
    Choudhury P; Das K; Das PK
    Langmuir; 2017 May; 33(18):4500-4510. PubMed ID: 28438019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrafast turn-on thiol probe for protein labeling and bioimaging.
    Sun J; Zhang L; Zhang X; Hu Y; Ge C; Fang J
    Analyst; 2016 Mar; 141(6):2009-15. PubMed ID: 26886182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.
    Wallisch M; Sulmann S; Koch KW; Christoffers J
    Chemistry; 2017 May; 23(27):6535-6543. PubMed ID: 28277609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive detection of cysteine over glutathione and homo-cysteine: New insight into the Michael addition of mercapto group to maleimide.
    Chen Z; Sun Q; Yao Y; Fan X; Zhang W; Qian J
    Biosens Bioelectron; 2017 May; 91():553-559. PubMed ID: 28088110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent thiol reagents. VI. N-(1-Anilinonaphthyl-4)maleimide; a fluorescent hydrophobic probe directed to thiol groups in protein.
    Kanaoka Y; Machida M; Machida M; Sekine T
    Biochim Biophys Acta; 1973 Aug; 317(2):563-8. PubMed ID: 19999739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Design of an Ultrasensitive and Highly Selective Chemodosimeter by a Dual Quenching Mechanism for Cysteine Based on a Facile Michael-Transcyclization Cascade Reaction.
    Li X; Zheng Y; Tong H; Qian R; Zhou L; Liu G; Tang Y; Li H; Lou K; Wang W
    Chemistry; 2016 Jun; 22(27):9247-56. PubMed ID: 27244367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly sensitive fluorescent probe based on the Michael addition mechanism with a large Stokes shift for cellular thiols imaging.
    Chen S; Hou P; Wang J; Fu S; Liu L
    Anal Bioanal Chem; 2018 Jul; 410(18):4323-4330. PubMed ID: 29687249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity.
    Chen G; Feng H; Xi W; Xu J; Pan S; Qian Z
    Analyst; 2019 Jan; 144(2):559-566. PubMed ID: 30417195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.
    Kand D; Kalle AM; Talukdar P
    Org Biomol Chem; 2013 Feb; 11(10):1691-701. PubMed ID: 23364761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of Glutathione-Mediated Degradation of Thiol-Maleimide Conjugates.
    Wu H; LeValley PJ; Luo T; Kloxin AM; Kiick KL
    Bioconjug Chem; 2018 Nov; 29(11):3595-3605. PubMed ID: 30285419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifunctional diaminoterephthalate scaffolds as fluorescence turn-on probes for thiols.
    Freimuth L; Christoffers J
    Chemistry; 2015 May; 21(22):8214-21. PubMed ID: 25891954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple biosensor with high selectivity and sensitivity: thiol-specific biomolecular probing and intracellular imaging by AIE fluorogen on a TLC plate through a thiol-ene click mechanism.
    Liu Y; Yu Y; Lam JW; Hong Y; Faisal M; Yuan WZ; Tang BZ
    Chemistry; 2010 Jul; 16(28):8433-8. PubMed ID: 20544746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.