These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37874799)

  • 1. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism.
    Prasad A; Sreedharan S; Bakthavachalu B; Laxman S
    PLoS Biol; 2023 Oct; 21(10):e3002342. PubMed ID: 37874799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors.
    Farnesi LC; Vargas HCM; Valle D; Rezende GL
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0006063. PubMed ID: 29084225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.
    Vargas HC; Farnesi LC; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2014 Mar; 62():54-60. PubMed ID: 24534672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation.
    da Silva RM; Vital WO; da Fonseca RN; Martins YPM; Lemos FJA; da Silva Vaz I; Logullo C
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Jan; 227():56-63. PubMed ID: 30266630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation.
    Farnesi LC; Menna-Barreto RF; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2015 Dec; 83():43-52. PubMed ID: 26514070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus.
    Noh MY; Kim SH; Gorman MJ; Kramer KJ; Muthukrishnan S; Arakane Y
    Insect Biochem Mol Biol; 2020 Jul; 122():103386. PubMed ID: 32315743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desiccation survival time for eggs of a widespread and invasive Australian mosquito species, Aedes (Finlaya) notoscriptus (Skuse).
    Faull KJ; Webb C; Williams CR
    J Vector Ecol; 2016 Jun; 41(1):55-62. PubMed ID: 27232125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.
    Faull KJ; Williams CR
    J Vector Ecol; 2015 Dec; 40(2):292-300. PubMed ID: 26611964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle.
    Rezende GL; Martins AJ; Gentile C; Farnesi LC; Pelajo-Machado M; Peixoto AA; Valle D
    BMC Dev Biol; 2008 Sep; 8():82. PubMed ID: 18789161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size.
    Sota T; Mogi M
    Oecologia; 1992 Jun; 90(3):353-358. PubMed ID: 28313521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in energy metabolism and adult desiccation resistance among three Aedes (Stegomyia) species (Diptera: Culicidae) from South Sulawesi, Indonesia.
    Sawabe K; Mogi M
    J Med Entomol; 1999 Jan; 36(1):101-7. PubMed ID: 10071500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased size and energy reserves in diapausing eggs of temperate Aedes aegypti populations.
    Mensch J; Di Battista C; De Majo MS; Campos RE; Fischer S
    J Insect Physiol; 2021; 131():104232. PubMed ID: 33798504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.
    Chotiwan N; Andre BG; Sanchez-Vargas I; Islam MN; Grabowski JM; Hopf-Jannasch A; Gough E; Nakayasu E; Blair CD; Belisle JT; Hill CA; Kuhn RJ; Perera R
    PLoS Pathog; 2018 Feb; 14(2):e1006853. PubMed ID: 29447265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).
    Govindarajan M; Mathivanan T; Elumalai K; Krishnappa K; Anandan A
    Parasitol Res; 2011 Aug; 109(2):353-67. PubMed ID: 21318385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes.
    Suman DS; Wang Y; Bilgrami AL; Gaugler R
    Acta Trop; 2013 Oct; 128(1):103-9. PubMed ID: 23860181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).
    Govindarajan M; Sivakumar R
    Parasitol Res; 2014 Apr; 113(4):1435-49. PubMed ID: 24488078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Length of Storage on Aedes aegypti (Diptera: Culicidae) Egg Viability.
    Brown HE; Smith C; Lashway S
    J Med Entomol; 2017 Mar; 54(2):489-491. PubMed ID: 28011737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter- and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia.
    Mogi M; Miyagi I; Abadi K; Syafruddin
    J Med Entomol; 1996 Jan; 33(1):53-7. PubMed ID: 8906905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-field evaluation of a modified commercial My Mosquito Deleter larval trap with sticky paper against Aedes aegypti.
    Talbalaghi A; Farooq M; Qualls WA; Blore K; Xue RD
    J Vector Ecol; 2020 Dec; 45(2):384-385. PubMed ID: 33207053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).
    Veerakumar K; Govindarajan M; Rajeswary M
    Parasitol Res; 2013 Dec; 112(12):4073-85. PubMed ID: 24005479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.