These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37874881)
1. Reliability and robustness of oscillations in some slow-fast chaotic systems. Jaquette J; Kedia S; Sander E; Touboul JD Chaos; 2023 Oct; 33(10):. PubMed ID: 37874881 [TBL] [Abstract][Full Text] [Related]
2. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale. Maslennikov OV; Nekorkin VI Chaos; 2016 Jul; 26(7):073104. PubMed ID: 27475064 [TBL] [Abstract][Full Text] [Related]
3. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
4. Chaotic saddles and interior crises in a dissipative nontwist system. Simile Baroni R; de Carvalho RE; Caldas IL; Viana RL; Morrison PJ Phys Rev E; 2023 Feb; 107(2-1):024216. PubMed ID: 36932624 [TBL] [Abstract][Full Text] [Related]
5. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Li X; Shen Y; Sun JQ; Yang S Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736 [TBL] [Abstract][Full Text] [Related]
6. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Liu X; Hong L; Jiang J Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621 [TBL] [Abstract][Full Text] [Related]
7. Crises and chaotic scattering in hydrodynamic pilot-wave experiments. Choueiri G; Suri B; Merrin J; Serbyn M; Hof B; Budanur NB Chaos; 2022 Sep; 32(9):093138. PubMed ID: 36182399 [TBL] [Abstract][Full Text] [Related]
8. Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. González-Miranda JM Chaos; 2003 Sep; 13(3):845-52. PubMed ID: 12946176 [TBL] [Abstract][Full Text] [Related]
9. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Kurz MJ; Stergiou N Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784 [TBL] [Abstract][Full Text] [Related]
10. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Li C; Wang E; Wang J J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081 [TBL] [Abstract][Full Text] [Related]
11. Strange attractor existence for non-local operators applied to four-dimensional chaotic systems with two equilibrium points. Doungmo Goufo EF Chaos; 2019 Feb; 29(2):023117. PubMed ID: 30823728 [TBL] [Abstract][Full Text] [Related]
12. Numerically evaluated functional equivalence between chaotic dynamics in neural networks and cellular automata under totalistic rules. Takada R; Munetaka D; Kobayashi S; Suemitsu Y; Nara S Cogn Neurodyn; 2007 Sep; 1(3):189-202. PubMed ID: 19003512 [TBL] [Abstract][Full Text] [Related]
13. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous coexisting attractors, large-scale amplitude control and finite-time synchronization of central cyclic memristive neural networks. Lai Q; Guo S Neural Netw; 2024 Oct; 178():106412. PubMed ID: 38838394 [TBL] [Abstract][Full Text] [Related]
15. Complex dynamics in an unexplored simple model of the peroxidase-oxidase reaction. Folke Olsen L Chaos; 2023 Feb; 33(2):023102. PubMed ID: 36859227 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Effects Analysis in Fractional Memristor-Based Rulkov Neuron Model. Ghasemi M; Raeissi ZM; Foroutannia A; Mohammadian M; Shakeriaski F Biomimetics (Basel); 2024 Sep; 9(9):. PubMed ID: 39329565 [TBL] [Abstract][Full Text] [Related]
18. Symmetry chaotic attractors and bursting dynamics of semiconductor lasers subjected to optical injection. Mengue AD; Essimbi BZ Chaos; 2012 Mar; 22(1):013113. PubMed ID: 22462989 [TBL] [Abstract][Full Text] [Related]
19. Hysteresis dynamics, bursting oscillations and evolution to chaotic regimes. Françoise JP; Piquet C Acta Biotheor; 2005; 53(4):381-92. PubMed ID: 16583277 [TBL] [Abstract][Full Text] [Related]
20. Is there chaos in the brain? II. Experimental evidence and related models. Korn H; Faure P C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]