These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37874937)
1. Resolving Temperature-Dependent Hydrate Nucleation Pathway: The Role of "Transition Layer". Li L; Wang X; Yan Y; Francisco JS; Zhang J; Zeng XC; Zhong J J Am Chem Soc; 2023 Nov; 145(44):24166-24174. PubMed ID: 37874937 [TBL] [Abstract][Full Text] [Related]
2. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation. Mirzaeifard S; Servio P; Rey AD J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648 [TBL] [Abstract][Full Text] [Related]
4. Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Yuhara D; Barnes BC; Suh D; Knott BC; Beckham GT; Yasuoka K; Wu DT; Sum AK Faraday Discuss; 2015; 179():463-74. PubMed ID: 25876773 [TBL] [Abstract][Full Text] [Related]
5. Free energy landscape and molecular pathways of gas hydrate nucleation. Bi Y; Porras A; Li T J Chem Phys; 2016 Dec; 145(21):211909. PubMed ID: 28799352 [TBL] [Abstract][Full Text] [Related]
6. Unraveling nucleation pathway in methane clathrate formation. Li L; Zhong J; Yan Y; Zhang J; Xu J; Francisco JS; Zeng XC Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24701-24708. PubMed ID: 32958648 [TBL] [Abstract][Full Text] [Related]
8. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid. Desgranges C; Delhommelle J Soft Matter; 2018 Jul; 14(29):5977-5985. PubMed ID: 29911716 [TBL] [Abstract][Full Text] [Related]
9. Effects of Layer-Charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study. Li Y; Chen M; Liu C; Song H; Yuan P; Zhang B; Liu D; Du P Langmuir; 2020 Apr; 36(13):3323-3335. PubMed ID: 32109063 [TBL] [Abstract][Full Text] [Related]
10. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching. Nguyen AH; Molinero V J Chem Phys; 2014 Feb; 140(8):084506. PubMed ID: 24588184 [TBL] [Abstract][Full Text] [Related]
11. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study. Zhang Z; Guo GJ Phys Chem Chem Phys; 2017 Jul; 19(29):19496-19505. PubMed ID: 28719672 [TBL] [Abstract][Full Text] [Related]
13. Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles. Xue H; Li L; Wang Y; Lu Y; Cui K; He Z; Bai G; Liu J; Zhou X; Wang J Nat Commun; 2024 Jan; 15(1):157. PubMed ID: 38167854 [TBL] [Abstract][Full Text] [Related]
14. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors. Sujith KS; Ramachandran CN J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719 [TBL] [Abstract][Full Text] [Related]
15. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment. Yan KF; Li XS; Chen ZY; Xia ZM; Xu CG; Zhang Z Langmuir; 2016 Aug; 32(31):7975-84. PubMed ID: 27398713 [TBL] [Abstract][Full Text] [Related]
16. Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate. Jin D; Coasne B Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850020 [TBL] [Abstract][Full Text] [Related]