BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37874968)

  • 1. Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory.
    Hauge E; Kristiansen HE; Konecny L; Kadek M; Repisky M; Pedersen TB
    J Chem Theory Comput; 2023 Nov; 19(21):7764-7775. PubMed ID: 37874968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general approach for the calculation and characterization of x-ray absorption spectra.
    Neville SP; Schuurman MS
    J Chem Phys; 2018 Oct; 149(15):154111. PubMed ID: 30342441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential energy and dipole moment surfaces of the triplet states of the O
    Karman T; van der Avoird A; Groenenboom GC
    J Chem Phys; 2017 Aug; 147(8):084306. PubMed ID: 28863529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the electronic transition dipole moment by Autler-Townes splitting: Comparison of three- and four-level excitation schemes for the Na2 A 1Sigma(u)+ - X 1Sigma(g)+ system.
    Ahmed E; Hansson A; Qi P; Kirova T; Lazoudis A; Kotochigova S; Lyyra AM; Li L; Qi J; Magnier S
    J Chem Phys; 2006 Feb; 124(8):084308. PubMed ID: 16512717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.
    Wilke J; Wilke M; Meerts WL; Schmitt M
    J Chem Phys; 2016 Jan; 144(4):044201. PubMed ID: 26827210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient electron dynamics with the planewave-based real-time time-dependent density functional theory: absorption spectra, vibronic electronic spectra, and coupled electron-nucleus dynamics.
    Min SK; Cho Y; Kim KS
    J Chem Phys; 2011 Dec; 135(24):244112. PubMed ID: 22225149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.
    Vequi-Suplicy CC; Coutinho K; Lamy MT
    Biophys Rev; 2014 Mar; 6(1):63-74. PubMed ID: 28509963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dimensional fitting of sparse datasets of CCSD(T) electronic energies and MP2 dipole moments, illustrated for the formic acid dimer and its complex IR spectrum.
    Qu C; Bowman JM
    J Chem Phys; 2018 Jun; 148(24):241713. PubMed ID: 29960304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional calculations of the vibronic structure of electronic absorption spectra.
    Dierksen M; Grimme S
    J Chem Phys; 2004 Feb; 120(8):3544-54. PubMed ID: 15268516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of Frequency-Dependent Polarizabilities: A Tool To Simulate Absorption and Circular Dichroism Molecular Spectra.
    Kessler J; Bouř P
    J Chem Theory Comput; 2015 May; 11(5):2210-20. PubMed ID: 26574421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.
    Liu H; Wang Y; Bowman JM
    J Chem Phys; 2015 May; 142(19):194502. PubMed ID: 26001464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground state and excited state dipole moments of 6,8-diphenylimidazo[1,2-α]pyrazine determined from solvatochromic shifts of absorption and fluorescence spectra.
    Sıdır I; Sıdır YG
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1220-5. PubMed ID: 21592851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory.
    Krykunov M; Autschbach J
    J Chem Phys; 2007 Jan; 126(2):024101. PubMed ID: 17228937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of collision-induced absorption spectra based on classical trajectories and ab initio potential and induced dipole surfaces. I. Case study of N
    Chistikov DN; Finenko AA; Lokshtanov SE; Petrov SV; Vigasin AA
    J Chem Phys; 2019 Nov; 151(19):194106. PubMed ID: 31757153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
    Simmen B; Mátyus E; Reiher M
    J Chem Phys; 2014 Oct; 141(15):154105. PubMed ID: 25338879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.
    Thomas M; Kirchner B
    J Phys Chem Lett; 2016 Feb; 7(3):509-13. PubMed ID: 26771403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local approaches for electric dipole moments in periodic systems and their application to real-time time-dependent density functional theory.
    Schreder L; Luber S
    J Chem Phys; 2021 Oct; 155(13):134116. PubMed ID: 34624999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipole Moment Calculations Using Multiconfiguration Pair-Density Functional Theory and Hybrid Multiconfiguration Pair-Density Functional Theory.
    Lykhin AO; Truhlar DG; Gagliardi L
    J Chem Theory Comput; 2021 Dec; 17(12):7586-7601. PubMed ID: 34793166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Computational Chemistry in the Experimental Determination of the Dipole Moment of Molecules in Solution.
    Cammi R
    J Comput Chem; 2019 Oct; 40(26):2309-2317. PubMed ID: 31246287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.