These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37875034)

  • 1. Impacts of climate change on the distribution of venomous Conus (Gastropoda: Conidae) species in the Indo-Pacific region.
    Siqueira-Silva T; Martinez PA
    Mar Environ Res; 2023 Nov; 192():106237. PubMed ID: 37875034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human injuries and fatalities due to venomous marine snails of the family Conidae.
    Kohn AJ
    Int J Clin Pharmacol Ther; 2016 Jul; 54(7):524-38. PubMed ID: 27285461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of conopeptide-containing venom from seven species of Conidae gastropoda on the chick biventer-cervicis nerve-muscle assessed using the ConoServer database.
    Brown E; Masinde EL; Woodcock BG
    Int J Clin Pharmacol Ther; 2016 Jul; 54(7):544-54. PubMed ID: 27285462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Venomous mollusks: the risks of human accidents by conus snails (gastropoda: conidae) in Brazil.
    Haddad V; de Paula Neto JB; Cobo VJ
    Rev Soc Bras Med Trop; 2006; 39(5):498-500. PubMed ID: 17160331
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Kohn AJ
    Toxins (Basel); 2018 Dec; 11(1):. PubMed ID: 30591658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four new records of Conidae (Mollusca: Caenogastropoda) from the Andaman Islands, India.
    Franklin JB; Venkateshwaran P; Vinithkumar NV; Kirubagaran R
    Zootaxa; 2013; 3635():81-6. PubMed ID: 26097933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor.
    Ahorukomeye P; Disotuar MM; Gajewiak J; Karanth S; Watkins M; Robinson SD; Flórez Salcedo P; Smith NA; Smith BJ; Schlegel A; Forbes BE; Olivera B; Hung-Chieh Chou D; Safavi-Hemami H
    Elife; 2019 Feb; 8():. PubMed ID: 30747102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and Ecological Effects of Climate Change on Venomous Marine and Amphibious Species in the Wilderness.
    Needleman RK; Neylan IP; Erickson TB
    Wilderness Environ Med; 2018 Sep; 29(3):343-356. PubMed ID: 29954662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of climate change on the geographical distribution and niche dynamics of
    Hu J; Feng Y; Zhong H; Liu W; Tian X; Wang Y; Tan T; Hu Z; Liu Y
    PeerJ; 2023; 11():e15741. PubMed ID: 37520262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraspecific genetic variation matters when predicting seagrass distribution under climate change.
    Hu ZM; Zhang QS; Zhang J; Kass JM; Mammola S; Fresia P; Draisma SGA; Assis J; Jueterbock A; Yokota M; Zhang Z
    Mol Ecol; 2021 Aug; 30(15):3840-3855. PubMed ID: 34022079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glowing seashells: diversity of fossilized coloration patterns on coral reef-associated cone snail (Gastropoda: Conidae) shells from the Neogene of the Dominican Republic.
    Hendricks JR
    PLoS One; 2015; 10(4):e0120924. PubMed ID: 25830769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the Sunda shelf biogeographic barrier in the cryptic differentiation of
    Ameri S; Pappurajam L; Labeeb KA; Lakshmanan R; Ayyathurai KPV
    PeerJ; 2023; 11():e15534. PubMed ID: 37465149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Distribution Characteristics of Suitable Planting Areas for
    Wang M; Hu Z; Wang Y; Zhao W
    Plants (Basel); 2023 Apr; 12(7):. PubMed ID: 37050185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When everything converges: integrative taxonomy with shell, DNA and venomic data reveals Conus conco, a new species of cone snails (Gastropoda: Conoidea).
    Puillandre N; Stöcklin R; Favreau P; Bianchi E; Perret F; Rivasseau A; Limpalaër L; Monnier E; Bouchet P
    Mol Phylogenet Evol; 2014 Nov; 80():186-92. PubMed ID: 25132129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic structure and life history are key factors in species distribution models of spiny lobsters.
    Singh SP; Groeneveld JC; Willows-Munro S
    Ecol Evol; 2020 Dec; 10(24):14394-14410. PubMed ID: 33391723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change.
    Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE
    PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios.
    Bania JK; Deka JR; Hazarika A; Das AK; Nath AJ; Sileshi GW
    Sci Rep; 2023 Nov; 13(1):20221. PubMed ID: 37980365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.