BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37875114)

  • 1. GuaB3, an overlooked enzyme in cyanobacteria's toolbox that sheds light on IMP dehydrogenase evolution.
    Hernández-Gómez A; Irisarri I; Fernández-Justel D; Peláez R; Jiménez A; Revuelta JL; Balsera M; Buey RM
    Structure; 2023 Dec; 31(12):1526-1534.e4. PubMed ID: 37875114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nucleotide-Dependent Conformational Switch Controls the Polymerization of Human IMP Dehydrogenases to Modulate their Catalytic Activity.
    Fernández-Justel D; Núñez R; Martín-Benito J; Jimeno D; González-López A; Soriano EM; Revuelta JL; Buey RM
    J Mol Biol; 2019 Mar; 431(5):956-969. PubMed ID: 30664871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.
    Smith S; Boitz J; Chidambaram ES; Chatterjee A; Ait-Tihyaty M; Ullman B; Jardim A
    Mol Microbiol; 2016 Jun; 100(5):824-40. PubMed ID: 26853689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Tritrichomonas foetus inosine monophosphate dehydrogenase in complex with the inhibitor ribavirin monophosphate reveals a catalysis-dependent ion-binding site.
    Prosise GL; Wu JZ; Luecke H
    J Biol Chem; 2002 Dec; 277(52):50654-9. PubMed ID: 12235158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes.
    Hedstrom L
    Crit Rev Biochem Mol Biol; 2012; 47(3):250-63. PubMed ID: 22332716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes.
    Patton GC; Stenmark P; Gollapalli DR; Sevastik R; Kursula P; Flodin S; Schuler H; Swales CT; Eklund H; Himo F; Nordlund P; Hedstrom L
    Nat Chem Biol; 2011 Oct; 7(12):950-8. PubMed ID: 22037469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal alterations of GMP reductase and IMP dehydrogenase activities during differentiation in HL-60 leukemia cells.
    Nakamura H; Natsumeda Y; Nagai M; Takahara J; Irino S; Weber G
    Leuk Res; 1992; 16(6-7):561-4. PubMed ID: 1353130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases.
    Buey RM; Fernández-Justel D; Marcos-Alcalde Í; Winter G; Gómez-Puertas P; de Pereda JM; Luis Revuelta J
    Sci Rep; 2017 Jun; 7(1):2648. PubMed ID: 28572600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure at 2.4 A resolution of Borrelia burgdorferi inosine 5'-monophosphate dehydrogenase: evidence of a substrate-induced hinged-lid motion by loop 6.
    McMillan FM; Cahoon M; White A; Hedstrom L; Petsko GA; Ringe D
    Biochemistry; 2000 Apr; 39(15):4533-42. PubMed ID: 10758003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.
    Markham GD; Bock CL; Schalk-Hihi C
    Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential signatures of bacterial and mammalian IMP dehydrogenase enzymes.
    Zhang R; Evans G; Rotella F; Westbrook E; Huberman E; Joachimiak A; Collart FR
    Curr Med Chem; 1999 Jul; 6(7):537-43. PubMed ID: 10390599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.
    Zhang R; Evans G; Rotella FJ; Westbrook EM; Beno D; Huberman E; Joachimiak A; Collart FR
    Biochemistry; 1999 Apr; 38(15):4691-700. PubMed ID: 10200156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a ternary complex of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase: NAD+ orients the active site loop for catalysis.
    Gan L; Petsko GA; Hedstrom L
    Biochemistry; 2002 Nov; 41(44):13309-17. PubMed ID: 12403633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis.
    Pimkin M; Pimkina J; Markham GD
    J Biol Chem; 2009 Mar; 284(12):7960-9. PubMed ID: 19153081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic alignment of orthologous inosine-5'-monophosphate dehydrogenases.
    Riera TV; Wang W; Josephine HR; Hedstrom L
    Biochemistry; 2008 Aug; 47(33):8689-96. PubMed ID: 18642884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases.
    Buey RM; Fernández-Justel D; Jiménez A; Revuelta JL
    Protein Sci; 2022 Sep; 31(9):e4399. PubMed ID: 36040265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates.
    Fernández-Justel D; Peláez R; Revuelta JL; Buey RM
    J Biol Chem; 2019 Oct; 294(40):14768-14775. PubMed ID: 31416831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of
    Gaiya DD; Muhammad A; Aimola IA; Udu SK; Balarabe SA; Auta R; Ekpa E; Sheyin A
    J Biomol Struct Dyn; 2023; 41(24):14832-14848. PubMed ID: 36866624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of inosine 5'-monophosphate dehydrogenase and the design of novel inhibitors.
    Sintchak MD; Nimmesgern E
    Immunopharmacology; 2000 May; 47(2-3):163-84. PubMed ID: 10878288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the active site of human IMP dehydrogenase using halogenated purine riboside 5'-monophosphates and covalent modification reagents.
    Antonino LC; Straub K; Wu JC
    Biochemistry; 1994 Feb; 33(7):1760-5. PubMed ID: 7906543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.