BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37875136)

  • 21. Arachis batizocoi: a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids.
    Leal-Bertioli SC; Santos SP; Dantas KM; Inglis PW; Nielen S; Araujo AC; Silva JP; Cavalcante U; Guimarães PM; Brasileiro AC; Carrasquilla-Garcia N; Penmetsa RV; Cook D; Moretzsohn MC; Bertioli DJ
    Ann Bot; 2015 Feb; 115(2):237-49. PubMed ID: 25538110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic variability of Brazilian Indian landraces of Arachis hypogaea L.
    Freitas FO; Moretzsohn MC; Valls JF
    Genet Mol Res; 2007 Sep; 6(3):675-84. PubMed ID: 18050088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses.
    Jiang H; Liao B; Ren X; Lei Y; Mace E; Fu T; Crouch JH
    J Genet Genomics; 2007 Jun; 34(6):544-54. PubMed ID: 17601614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A first insight into population structure and linkage disequilibrium in the US peanut minicore collection.
    Belamkar V; Selvaraj MG; Ayers JL; Payton PR; Puppala N; Burow MD
    Genetica; 2011 Apr; 139(4):411-29. PubMed ID: 21442404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut.
    Pandey MK; Gangurde SS; Sharma V; Pattanashetti SK; Naidu GK; Faye I; Hamidou F; Desmae H; Kane NA; Yuan M; Vadez V; Nigam SN; Varshney RK
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.).
    Khera P; Pandey MK; Mallikarjuna N; Sriswathi M; Roorkiwal M; Janila P; Sharma S; Shilpa K; Sudini H; Guo B; Varshney RK
    Mol Genet Genomics; 2019 Apr; 294(2):365-378. PubMed ID: 30467595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome sequencing for SNP discovery across Cucumis melo.
    Blanca J; Esteras C; Ziarsolo P; Pérez D; Fernã Ndez-Pedrosa V; Collado C; Rodrã Guez de Pablos R; Ballester A; Roig C; Cañizares J; Picó B
    BMC Genomics; 2012 Jun; 13():280. PubMed ID: 22726804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut.
    Nagy ED; Guo Y; Tang S; Bowers JE; Okashah RA; Taylor CA; Zhang D; Khanal S; Heesacker AF; Khalilian N; Farmer AD; Carrasquilla-Garcia N; Penmetsa RV; Cook D; Stalker HT; Nielsen N; Ozias-Akins P; Knapp SJ
    BMC Genomics; 2012 Sep; 13():469. PubMed ID: 22967170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding.
    Pascual L; Ruiz M; López-Fernández M; Pérez-Peña H; Benavente E; Vázquez JF; Sansaloni C; Giraldo P
    BMC Genomics; 2020 Feb; 21(1):122. PubMed ID: 32019507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers.
    Wang H; Khera P; Huang B; Yuan M; Katam R; Zhuang W; Harris-Shultz K; Moore KM; Culbreath AK; Zhang X; Varshney RK; Xie L; Guo B
    J Integr Plant Biol; 2016 May; 58(5):452-65. PubMed ID: 26178804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic diversity, linkage disequilibrium, and population structure of tetraploid wheat landraces originating from Europe and Asia.
    Rabieyan E; Darvishzadeh R; Mohammadi R; Gul A; Rasheed A; Akhar FK; Abdi H; Alipour H
    BMC Genomics; 2023 Nov; 24(1):682. PubMed ID: 37964224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Storage protein profiles in Spanish and runner market type peanuts and potential markers.
    Liang XQ; Luo M; Holbrook CC; Guo BZ
    BMC Plant Biol; 2006 Oct; 6():24. PubMed ID: 17038167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.).
    Daudi H; Shimelis H; Mathew I; Rathore A; Ojiewo CO
    Sci Rep; 2021 Aug; 11(1):16513. PubMed ID: 34389777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of genetic diversity and population structure in wheat using array based SNP markers.
    Kumar D; Chhokar V; Sheoran S; Singh R; Sharma P; Jaiswal S; Iquebal MA; Jaiswar A; Jaisri J; Angadi UB; Rai A; Singh GP; Kumar D; Tiwari R
    Mol Biol Rep; 2020 Jan; 47(1):293-306. PubMed ID: 31630318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting the Genetic Diversity of USDA Cowpea Germplasm Collection Using Kompetitive Allele Specific PCR-Single Nucleotide Polymorphism Markers.
    Potts J; Michael VN; Meru G; Wu X; Blair MW
    Genes (Basel); 2024 Mar; 15(3):. PubMed ID: 38540421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of genetic diversity and structure of Bambara groundnut [Vigna subterranea (L.) verdc.] landraces in South Africa.
    Minnaar-Ontong A; Gerrano AS; Labuschagne MT
    Sci Rep; 2021 Apr; 11(1):7408. PubMed ID: 33795835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel SNP panel developed for targeted genotyping-by-sequencing (GBS) reveals genetic diversity and population structure of Musa spp. germplasm collection.
    Gardoce RR; Manohar ANC; Mendoza JS; Tejano MS; Nocum JDL; Lachica GC; Gueco LS; Cueva FMD; Lantican DV
    Mol Genet Genomics; 2023 Jul; 298(4):857-869. PubMed ID: 37085697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translational genomics for achieving higher genetic gains in groundnut.
    Pandey MK; Pandey AK; Kumar R; Nwosu CV; Guo B; Wright GC; Bhat RS; Chen X; Bera SK; Yuan M; Jiang H; Faye I; Radhakrishnan T; Wang X; Liang X; Liao B; Zhang X; Varshney RK; Zhuang W
    Theor Appl Genet; 2020 May; 133(5):1679-1702. PubMed ID: 32328677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.).
    Varshney RK; Bertioli DJ; Moretzsohn MC; Vadez V; Krishnamurthy L; Aruna R; Nigam SN; Moss BJ; Seetha K; Ravi K; He G; Knapp SJ; Hoisington DA
    Theor Appl Genet; 2009 Feb; 118(4):729-39. PubMed ID: 19048225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic Diversity and Population Structure of a Wide
    Rispail N; Wohor OZ; Osuna-Caballero S; Barilli E; Rubiales D
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.