These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37875207)
41. Differential Sensitivity of a Coccal Green Algal and a Cyanobacterial Species to Dissolved Natural Organic Matter (NOM) (8 pp). Heinrich A Environ Sci Pollut Res Int; 2007 Jan; 14 Suppl 1():11-8. PubMed ID: 21959535 [TBL] [Abstract][Full Text] [Related]
42. Chlorella vulgaris on the cathode promoted the performance of sediment microbial fuel cells for electrogenesis and pollutant removal. Song X; Wang W; Cao X; Wang Y; Zou L; Ge X; Zhao Y; Si Z; Wang Y Sci Total Environ; 2020 Aug; 728():138011. PubMed ID: 32361353 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris). Liu Q; Zhang G; Ding J; Zou H; Shi H; Huang C Bull Environ Contam Toxicol; 2018 Feb; 100(2):228-233. PubMed ID: 29159542 [TBL] [Abstract][Full Text] [Related]
44. [Bioavailability of dissolved organic nitrogen components in the lake sediment to alage]. Feng WY; Zhang S; Jiao LX; Wang SR; Li CY; Cui FL; Fu XJ; Zhen ZL Huan Jing Ke Xue; 2013 Jun; 34(6):2176-83. PubMed ID: 23947030 [TBL] [Abstract][Full Text] [Related]
45. The formation of a metalimnetic oxygen minimum exemplifies how ecosystem dynamics shape biogeochemical processes: A modelling study. Mi C; Shatwell T; Ma J; Wentzky VC; Boehrer B; Xu Y; Rinke K Water Res; 2020 May; 175():115701. PubMed ID: 32179270 [TBL] [Abstract][Full Text] [Related]
46. Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility. Spijkerman E; Lukas M; Wacker A Phytochemistry; 2017 Dec; 144():43-51. PubMed ID: 28881198 [TBL] [Abstract][Full Text] [Related]
47. Nutrient utilization and oxygen production by Chlorella vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system. Najm Y; Jeong S; Leiknes T Bioresour Technol; 2017 Aug; 237():64-71. PubMed ID: 28286010 [TBL] [Abstract][Full Text] [Related]
48. Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris. Khoshnamvand M; Ashtiani S; Chen Y; Liu J Environ Res; 2020 Jun; 185():109433. PubMed ID: 32247152 [TBL] [Abstract][Full Text] [Related]
49. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment. Köhler SJ; Lavonen E; Keucken A; Schmitt-Kopplin P; Spanjer T; Persson K Water Res; 2016 Feb; 89():232-40. PubMed ID: 26689660 [TBL] [Abstract][Full Text] [Related]
50. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate. Mohseni A; Kube M; Fan L; Roddick FA Environ Sci Pollut Res Int; 2020 Jul; 27(21):26905-26914. PubMed ID: 32382902 [TBL] [Abstract][Full Text] [Related]
51. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity. Cheng T; Wei CH; Leiknes T Bioresour Technol; 2017 Oct; 241():360-368. PubMed ID: 28577485 [TBL] [Abstract][Full Text] [Related]
52. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Her N; Amy G; Park HR; Song M Water Res; 2004 Mar; 38(6):1427-38. PubMed ID: 15016519 [TBL] [Abstract][Full Text] [Related]
53. The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. Kong Q; Zhu L; Shen X J Hazard Mater; 2010 Jun; 178(1-3):282-6. PubMed ID: 20133058 [TBL] [Abstract][Full Text] [Related]
54. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Xu Q; Yang L; Yang W; Bai Y; Hou P; Zhao J; Zhou L; Zuo Z Ecotoxicol Environ Saf; 2017 Jan; 135():191-200. PubMed ID: 27741460 [TBL] [Abstract][Full Text] [Related]
55. [Distribution Characteristics of Chromophoric Dissolved Organic Matter and Nutrients from the Yellow Sea and Bohai Sea in Autumn]. Tang Y; Sun YY; Shi XY; Han XR; Su RG Huan Jing Ke Xue; 2017 Nov; 38(11):4501-4512. PubMed ID: 29965393 [TBL] [Abstract][Full Text] [Related]
56. Photo-induced transformations of mercury(II) species in the presence of algae, Chlorella vulgaris. Deng L; Fu D; Deng N J Hazard Mater; 2009 May; 164(2-3):798-805. PubMed ID: 18834666 [TBL] [Abstract][Full Text] [Related]
57. A study on the relationship between metabolism of Cyanobacteria and chemical oxygen demand in Dianchi Lake, China. He J; Zhang Y; Wu X; Yang Y; Xu X; Zheng B; Deng W; Shao Z; Lu L; Wang L; Zhou H Water Environ Res; 2019 Dec; 91(12):1650-1660. PubMed ID: 31232497 [TBL] [Abstract][Full Text] [Related]
58. Spatio-temporal variability of dissolved organic nitrogen (DON), carbon (DOC), and nutrients in the Nile River, Egypt. Badr EA Environ Monit Assess; 2016 Oct; 188(10):580. PubMed ID: 27660211 [TBL] [Abstract][Full Text] [Related]
59. Quantifying the bioaccumulation of Pb to Chlorella vulgaris in the presence of dissolved organic matters with different molecular weights. Shi Z; Du H; Wang C; Xu H Environ Sci Pollut Res Int; 2022 Oct; 29(47):70921-70932. PubMed ID: 35593980 [TBL] [Abstract][Full Text] [Related]
60. Synchronous-scan fluorescence spectra of Chlorella vulgaris solution. Liu X; Tao S; Deng N Chemosphere; 2005 Sep; 60(11):1550-4. PubMed ID: 15961140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]