These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37875210)
1. Effects of municipal waste compost on microbial biodiversity and energy production in terrestrial microbial fuel cells. Garbini GL; Barra Caracciolo A; Rolando L; Visca A; Borello D; Cosentini C; Gagliardi G; Ieropoulos I; Grenni P N Biotechnol; 2023 Dec; 78():131-140. PubMed ID: 37875210 [TBL] [Abstract][Full Text] [Related]
2. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of a Bacterial Community in the Anode and Cathode of Microbial Fuel Cells under Sulfadiazine Pressure. Yang Z; Li H; Li N; Sardar MF; Song T; Zhu H; Xing X; Zhu C Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627790 [TBL] [Abstract][Full Text] [Related]
4. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition. Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production. Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878 [TBL] [Abstract][Full Text] [Related]
7. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network. Zhang D; Zhu Y; Pedrycz W; Guo Y Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213346 [TBL] [Abstract][Full Text] [Related]
8. Anodic and cathodic microbial communities in single chamber microbial fuel cells. Daghio M; Gandolfi I; Bestetti G; Franzetti A; Guerrini E; Cristiani P N Biotechnol; 2015 Jan; 32(1):79-84. PubMed ID: 25291711 [TBL] [Abstract][Full Text] [Related]
9. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells. Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078 [TBL] [Abstract][Full Text] [Related]
10. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells. Sharma R; Kumari R; Pant D; Malaviya P Chemosphere; 2022 Apr; 292():133437. PubMed ID: 34973250 [TBL] [Abstract][Full Text] [Related]
11. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Butler CS; Nerenberg R Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985 [TBL] [Abstract][Full Text] [Related]
12. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Miran W; Nawaz M; Kadam A; Shin S; Heo J; Jang J; Lee DS Environ Sci Pollut Res Int; 2015 Sep; 22(17):13477-85. PubMed ID: 25940481 [TBL] [Abstract][Full Text] [Related]
13. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. Lee YY; Kim TG; Cho KS J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818 [TBL] [Abstract][Full Text] [Related]
14. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Miran W; Nawaz M; Jang J; Lee DS Sci Total Environ; 2016 Mar; 547():197-205. PubMed ID: 26780146 [TBL] [Abstract][Full Text] [Related]
15. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Abd-Elrahman NK; Al-Harbi N; Basfer NM; Al-Hadeethi Y; Umar A; Akbar S Molecules; 2022 Nov; 27(21):. PubMed ID: 36364309 [TBL] [Abstract][Full Text] [Related]
16. Compost in plant microbial fuel cell for bioelectricity generation. Moqsud MA; Yoshitake J; Bushra QS; Hyodo M; Omine K; Strik D Waste Manag; 2015 Feb; 36():63-9. PubMed ID: 25443096 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste. Yamamoto S; Suzuki K; Araki Y; Mochihara H; Hosokawa T; Kubota H; Chiba Y; Rubaba O; Tashiro Y; Futamata H Microbes Environ; 2014; 29(2):145-53. PubMed ID: 24789988 [TBL] [Abstract][Full Text] [Related]
18. Anode amendment with kaolin and activated carbon increases electricity generation in a microbial fuel cell. Hirsch LO; Dubrovin IA; Gandu B; Emanuel E; Kjellerup BV; Ugur GE; Schechter A; Cahan R Bioelectrochemistry; 2023 Oct; 153():108486. PubMed ID: 37302334 [TBL] [Abstract][Full Text] [Related]
19. Bioelectricity production from the anodic inoculation of Geobacter sulfurreducens DL-1 bacteria in constructed wetlands-microbial fuel cells. Guadarrama-Pérez O; Carolina Guevara-Pérez A; Hugo Guadarrama-Pérez V; Bustos-Terrones V; Hernández-Romano J; Angélica Guillén-Garcés R; Eleonora Moeller-Chávez G Bioelectrochemistry; 2023 Dec; 154():108537. PubMed ID: 37542876 [TBL] [Abstract][Full Text] [Related]
20. Microbial community composition is unaffected by anode potential. Zhu X; Yates MD; Hatzell MC; Ananda Rao H; Saikaly PE; Logan BE Environ Sci Technol; 2014 Jan; 48(2):1352-8. PubMed ID: 24364567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]