These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37875338)

  • 1. Sublethal nickel toxicity shuts off manganese oxidation and pellicle biofilm formation in Pseudomonas putida GB-1.
    Marques Mendonca R; Fulton T; Blackwood C; Costello D
    Environ Microbiol; 2023 Dec; 25(12):3639-3654. PubMed ID: 37875338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1.
    Banh A; Chavez V; Doi J; Nguyen A; Hernandez S; Ha V; Jimenez P; Espinoza F; Johnson HA
    PLoS One; 2013; 8(10):e77835. PubMed ID: 24147089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mn(II) oxidation in Pseudomonas putida GB-1 is influenced by flagella synthesis and surface substrate.
    Geszvain K; Yamaguchi A; Maybee J; Tebo BM
    Arch Microbiol; 2011 Aug; 193(8):605-14. PubMed ID: 21479918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1.
    Geszvain K; Smesrud L; Tebo BM
    Appl Environ Microbiol; 2016 Jul; 82(13):3774-3782. PubMed ID: 27084014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 α-ethinylestradiol.
    Tran TN; Kim DG; Ko SO
    J Hazard Mater; 2018 Feb; 344():350-359. PubMed ID: 29080488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological manganese oxidation by Pseudomonas putida in trickling filters.
    McKee KP; Vance CC; Karthikeyan R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(7):523-35. PubMed ID: 26943637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of manganese(II,III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes.
    Geszvain K; McCarthy JK; Tebo BM
    Appl Environ Microbiol; 2013 Jan; 79(1):357-66. PubMed ID: 23124227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese-oxidizing bacteria mediate the degradation of 17α-ethinylestradiol.
    Sabirova JS; Cloetens LF; Vanhaecke L; Forrez I; Verstraete W; Boon N
    Microb Biotechnol; 2008 Nov; 1(6):507-12. PubMed ID: 21261871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure.
    Zhu M; Ginder-Vogel M; Sparks DL
    Environ Sci Technol; 2010 Jun; 44(12):4472-8. PubMed ID: 20469849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1.
    Geszvain K; Tebo BM
    Appl Environ Microbiol; 2010 Feb; 76(4):1224-31. PubMed ID: 20038702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the sorption reactivity of bacteriogenic and mycogenic Mn oxide nanoparticles.
    Droz B; Dumas N; Duckworth OW; Peña J
    Environ Sci Technol; 2015 Apr; 49(7):4200-8. PubMed ID: 25668070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1.
    Zhou NQ; Liu DF; Min D; Cheng L; Huang XN; Tian LJ; Li DB; Yu HQ
    Chemosphere; 2018 Nov; 211():345-351. PubMed ID: 30077930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm.
    Toner B; Fakra S; Villalobos M; Warwick T; Sposito G
    Appl Environ Microbiol; 2005 Mar; 71(3):1300-10. PubMed ID: 15746332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability and Toxicity of Copper, Manganese, and Nickel in Paronychiurus kimi (Collembola), and Biomarker Discovery for Their Exposure.
    Son J; Lee YS; Lee SE; Shin KI; Cho K
    Arch Environ Contam Toxicol; 2017 Jan; 72(1):142-152. PubMed ID: 27858106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1.
    de Vrind JP; Brouwers GJ; Corstjens PL; den Dulk J; de Vrind-de Jong EW
    Appl Environ Microbiol; 1998 Oct; 64(10):3556-62. PubMed ID: 9758767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria.
    Shobnam N; Sun Y; Mahmood M; Löffler FE; Im J
    J Hazard Mater; 2021 Sep; 417():125987. PubMed ID: 34229371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative Formation and Removal of Complexed Mn(III) by
    Wright MH; Geszvain K; Oldham VE; Luther GW; Tebo BM
    Front Microbiol; 2018; 9():560. PubMed ID: 29706936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.
    Kamran MA; Eqani SAMAS; Bibi S; Xu RK; Amna ; Monis MFH; Katsoyiannis A; Bokhari H; Chaudhary HJ
    Ecotoxicol Environ Saf; 2016 Apr; 126():256-263. PubMed ID: 26773835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas putida KT2440 response to nickel or cobalt induced stress by quantitative proteomics.
    Ray P; Girard V; Gault M; Job C; Bonneu M; Mandrand-Berthelot MA; Singh SS; Job D; Rodrigue A
    Metallomics; 2013 Jan; 5(1):68-79. PubMed ID: 23235558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese oxidation induced by water table fluctuations in a sand column.
    Farnsworth CE; Voegelin A; Hering JG
    Environ Sci Technol; 2012 Jan; 46(1):277-84. PubMed ID: 22126514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.