These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37875589)

  • 1. Identification of ONECUT3 as a stemness-related transcription factor regulating NK cell-mediated immune evasion in pancreatic cancer.
    Shi H; Tsang Y; Yang Y; Chin HL
    Sci Rep; 2023 Oct; 13(1):18133. PubMed ID: 37875589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting ONECUT3 blocks glycolytic metabolism and potentiates anti-PD-1 therapy in pancreatic cancer.
    Chen PC; Ning Y; Li H; Su JG; Shen JB; Feng QC; Jiang SH; Shi PD; Guo RS
    Cell Oncol (Dordr); 2024 Feb; 47(1):81-96. PubMed ID: 37606818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of CEACAM5 as a stemness-related inhibitory immune checkpoint in pancreatic cancer.
    Shi H; Tsang Y; Yang Y
    BMC Cancer; 2022 Dec; 22(1):1291. PubMed ID: 36494785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of natural killer and cytotoxic T-cell immune infiltrates in pancreatic ductal adenocarcinoma.
    Persky J; Cruz SM; Darrow MA; Judge SJ; Li Y; Bold RJ; Karnezis AN; Matsukuma KE; Qi L; Canter RJ
    J Surg Oncol; 2024 Apr; 129(5):885-892. PubMed ID: 38196111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma.
    Fitzgerald AA; Wang S; Agarwal V; Marcisak EF; Zuo A; Jablonski SA; Loth M; Fertig EJ; MacDougall J; Zhukovsky E; Trivedi S; Bhatia D; O'Neill V; Weiner LM
    J Immunother Cancer; 2021 Nov; 9(11):. PubMed ID: 34737215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer.
    Canel M; Sławińska AD; Lonergan DW; Kallor AA; Upstill-Goddard R; Davidson C; von Kriegsheim A; Biankin AV; Byron A; Alfaro J; Serrels A
    Gut; 2023 Dec; 73(1):131-155. PubMed ID: 36977556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells.
    Yu Q; Newsome RC; Beveridge M; Hernandez MC; Gharaibeh RZ; Jobin C; Thomas RM
    Gut Microbes; 2022; 14(1):2112881. PubMed ID: 35980869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer.
    Brooks J; Fleischmann-Mundt B; Woller N; Niemann J; Ribback S; Peters K; Demir IE; Armbrecht N; Ceyhan GO; Manns MP; Wirth TC; Kubicka S; Bernhardt G; Smyth MJ; Calvisi DF; Gürlevik E; Kühnel F
    Cancer Res; 2018 Jan; 78(2):475-488. PubMed ID: 29180478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD90 highly expressed population harbors a stemness signature and creates an immunosuppressive niche in pancreatic cancer.
    Shi J; Lu P; Shen W; He R; Yang MW; Fang Y; Sun YW; Niu N; Xue J
    Cancer Lett; 2019 Jul; 453():158-169. PubMed ID: 30954649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.
    Ene-Obong A; Clear AJ; Watt J; Wang J; Fatah R; Riches JC; Marshall JF; Chin-Aleong J; Chelala C; Gribben JG; Ramsay AG; Kocher HM
    Gastroenterology; 2013 Nov; 145(5):1121-32. PubMed ID: 23891972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SALL4-related gene signature defines a specific stromal subset of pancreatic ductal adenocarcinoma with poor prognostic features.
    Vienot A; Monnien F; Truntzer C; Mougey V; Bouard A; Pallandre JR; Molimard C; Loyon R; Asgarov K; Averous G; Ghiringhelli F; Bibeau F; Peixoto P; Borg C
    Mol Oncol; 2023 Jul; 17(7):1356-1378. PubMed ID: 36587397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of NK cell antitumor responses using an oncolytic parvovirus.
    Bhat R; Dempe S; Dinsart C; Rommelaere J
    Int J Cancer; 2011 Feb; 128(4):908-19. PubMed ID: 20473905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I.
    Yamamoto K; Venida A; Yano J; Biancur DE; Kakiuchi M; Gupta S; Sohn ASW; Mukhopadhyay S; Lin EY; Parker SJ; Banh RS; Paulo JA; Wen KW; Debnath J; Kim GE; Mancias JD; Fearon DT; Perera RM; Kimmelman AC
    Nature; 2020 May; 581(7806):100-105. PubMed ID: 32376951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis.
    Cano CE; Hamidi T; Garcia MN; Grasso D; Loncle C; Garcia S; Calvo E; Lomberk G; Dusetti N; Bartholin L; Urrutia R; Iovanna JL
    Gut; 2014 Jun; 63(6):984-95. PubMed ID: 24026351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients.
    Lim SA; Kim J; Jeon S; Shin MH; Kwon J; Kim TJ; Im K; Han Y; Kwon W; Kim SW; Yee C; Kim SJ; Jang JY; Lee KM
    Front Immunol; 2019; 10():496. PubMed ID: 31024520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype.
    Marcon F; Zuo J; Pearce H; Nicol S; Margielewska-Davies S; Farhat M; Mahon B; Middleton G; Brown R; Roberts KJ; Moss P
    Oncoimmunology; 2020 Nov; 9(1):1845424. PubMed ID: 33299656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel refined pyroptosis and inflammasome-related genes signature for predicting prognosis and immune microenvironment in pancreatic ductal adenocarcinoma.
    Zuo J; Yi C; Chen Z; Zhou B; Yang T; Lin J
    Sci Rep; 2022 Nov; 12(1):18384. PubMed ID: 36319832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prognostic-Related Biomarkers in Pancreatic Ductal Adenocarcinoma Correlating with Immune Infiltrates Based on Proteomics.
    Kou YQ; Yang YP; Pan ZJ; Du SS; Yuan WN; He K; Nie B
    Med Sci Monit; 2023 Mar; 29():e938785. PubMed ID: 36905103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.
    Huang C; Li Z; Li N; Li Y; Chang A; Zhao T; Wang X; Wang H; Gao S; Yang S; Hao J; Ren H
    Gastroenterology; 2018 Feb; 154(3):675-688. PubMed ID: 28989066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions.
    Lin W; Noel P; Borazanci EH; Lee J; Amini A; Han IW; Heo JS; Jameson GS; Fraser C; Steinbach M; Woo Y; Fong Y; Cridebring D; Von Hoff DD; Park JO; Han H
    Genome Med; 2020 Sep; 12(1):80. PubMed ID: 32988401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.