These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37875729)

  • 1. Ultra-Broadband Flexible Thin-Film Sensor for Sound Monitoring and Ultrasonic Diagnosis.
    Xia Y; Sun C; Liu W; Wang X; Wen K; Feng Z; Zhang G; Fan E; He Q; Lin Z; Gou Y; Wu Y; Yang J
    Small; 2024 Mar; 20(10):e2305678. PubMed ID: 37875729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible, Acoustic Localized Sensor with Mass Block-Beam Structure Based on Polydimethylsiloxane-Silver Nanowires.
    Zhang Q; Ji C; Lv L; Zhao D; Ji J; Zhuo K; Yuan Z; Zhang W; Sang S
    Soft Robot; 2021 Jun; 8(3):352-363. PubMed ID: 32668191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost flexible thin-film detector for medical dosimetry applications.
    Zygmanski P; Abkai C; Han Z; Shulevich Y; Menichelli D; Hesser J
    J Appl Clin Med Phys; 2014 Mar; 15(2):4454. PubMed ID: 24710432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Fidelity Skin-Attachable Acoustic Sensor for Realizing Auditory Electronic Skin.
    Lee S; Kim J; Roh H; Kim W; Chung S; Moon W; Cho K
    Adv Mater; 2022 May; 34(21):e2109545. PubMed ID: 35191559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring.
    Rennoll V; McLane I; Eisape A; Grant D; Hahn H; Elhilali M; West JE
    ACS Appl Bio Mater; 2023 Aug; 6(8):3241-3256. PubMed ID: 37470762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustical properties of 3D printed thermoplastics.
    Antoniou A; Evripidou N; Giannakou M; Constantinides G; Damianou C
    J Acoust Soc Am; 2021 Apr; 149(4):2854. PubMed ID: 33940906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
    Schmitt M; Olfert S; Rautenberg J; Lindner G; Henning B; Reindl LM
    Sensors (Basel); 2013 Feb; 13(3):2777-85. PubMed ID: 23447010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.
    Liu M; Zeng Z; Xu H; Liao Y; Zhou L; Zhang Z; Su Z
    Ultrasonics; 2017 Jul; 78():166-174. PubMed ID: 28371650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrahigh sensitivity acoustic sensor system for weak signal detection based on an ultrahigh-
    Xing T; Xing E; Jia T; Li J; Rong J; Li L; Tian S; Zhou Y; Liu W; Tang J; Liu J
    Microsyst Nanoeng; 2023; 9():65. PubMed ID: 37213821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications.
    Okamoto Y; Nguyen TV; Takahashi H; Takei Y; Okada H; Ichiki M
    Sci Rep; 2023 Apr; 13(1):6503. PubMed ID: 37081122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations.
    Jeger-Madiot N; Mousset X; Dupuis C; Rabiet L; Hoyos M; Peyrin JM; Aider JL
    J Acoust Soc Am; 2022 Jun; 151(6):4165. PubMed ID: 35778170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel sensor for monitoring acoustic cavitation. Part II: Prototype performance evaluation.
    Zeqiri B; Lee ND; Hodnett M; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1351-62. PubMed ID: 14609075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray characteristics of an ultrasonic microdroplet generator with a continuously variable operating frequency.
    Shan L; Cui M; Meacham JM
    J Acoust Soc Am; 2021 Aug; 150(2):1300. PubMed ID: 34470276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrugated Photoactive Thin Films for Flexible Strain Sensor.
    Ryu D; Mongare A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D simulation of an audible ultrasonic electrolarynx using difference waves.
    Mills P; Zara J
    PLoS One; 2014; 9(11):e113339. PubMed ID: 25401965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustable Acoustic Field Controlled by "Ultrasonic Projector" on Ultrasound Application.
    Li Z; Yang S; Fei C; Guo R; Chen D; Zheng C; Yang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):254-260. PubMed ID: 34469292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically Levitated Flexible Vibration Sensors with Surficial Micropyramid Arrays for Magnetism Enhancement.
    Zhang X; Zheng C; Li Y; Wu Z; Huang X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37916-37925. PubMed ID: 35943234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thin-film acoustic metamaterial absorber with tunable sound absorption characteristics.
    Xu H; Kong D
    J Acoust Soc Am; 2023 Jun; 153(6):3493-3500. PubMed ID: 37370247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.