These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 37875936)

  • 1. CRISPR/Cas9 technology: applications in oocytes and early embryos.
    Zhang YR; Yin TL; Zhou LQ
    J Transl Med; 2023 Oct; 21(1):746. PubMed ID: 37875936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos.
    Plaza Reyes A; Lanner F
    Development; 2017 Jan; 144(1):3-7. PubMed ID: 28049687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene editing in human development: ethical concerns and practical applications.
    Rossant J
    Development; 2018 Jul; 145(16):. PubMed ID: 30045910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges.
    Pei WD; Zhang Y; Yin TL; Yu Y
    Brief Funct Genomics; 2020 May; 19(3):215-228. PubMed ID: 31819946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing.
    Papathanasiou S; Markoulaki S; Blaine LJ; Leibowitz ML; Zhang CZ; Jaenisch R; Pellman D
    Nat Commun; 2021 Oct; 12(1):5855. PubMed ID: 34615869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [CRISPR-Cas9, germinal cells and human embryo].
    Jouannet P
    Biol Aujourdhui; 2017; 211(3):207-213. PubMed ID: 29412130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes.
    Rasys AM; Park S; Ball RE; Alcala AJ; Lauderdale JD; Menke DB
    Cell Rep; 2019 Aug; 28(9):2288-2292.e3. PubMed ID: 31461646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues.
    Piergentili R; Del Rio A; Signore F; Umani Ronchi F; Marinelli E; Zaami S
    Cells; 2021 Apr; 10(5):. PubMed ID: 33919194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas gene editing in the human germline.
    Bekaert B; Boel A; Cosemans G; De Witte L; Menten B; Heindryckx B
    Semin Cell Dev Biol; 2022 Nov; 131():93-107. PubMed ID: 35305903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Applications of CRISPR/Cas9-Based Genome Editing in
    Mu Y; Zhang C; Li T; Jin FJ; Sung YJ; Oh HM; Lee HG; Jin L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361647
    [No Abstract]   [Full Text] [Related]  

  • 13. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells.
    Bloomer H; Khirallah J; Li Y; Xu Q
    Adv Drug Deliv Rev; 2022 Feb; 181():114087. PubMed ID: 34942274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review.
    Musunuru K
    JAMA Cardiol; 2017 Aug; 2(8):914-919. PubMed ID: 28614576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos.
    Kaneko T; Nakagawa Y
    Cryobiology; 2020 Feb; 92():231-234. PubMed ID: 31987837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.