BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37876271)

  • 21. A review of fish swimming mechanics and behaviour in altered flows.
    Liao JC
    Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1973-93. PubMed ID: 17472925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model of Collective Fish Behavior with Hydrodynamic Interactions.
    Filella A; Nadal F; Sire C; Kanso E; Eloy C
    Phys Rev Lett; 2018 May; 120(19):198101. PubMed ID: 29799263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bottom-level motion control for robotic fish to swim in groups: modeling and experiments.
    Li L; Liu A; Wang W; Ravi S; Fu R; Yu J; Xie G
    Bioinspir Biomim; 2019 May; 14(4):046001. PubMed ID: 30875698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous response of a self-organized fish school to a predator.
    Deng J; Liu D
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33930884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces.
    Li L; Wang S; Zhang Y; Song S; Wang C; Tan S; Zhao W; Wang G; Sun W; Yang F; Liu J; Chen B; Xu H; Nguyen P; Kovac M; Wen L
    Sci Robot; 2022 May; 7(66):eabm6695. PubMed ID: 35584203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
    Shintake J; Cacucciolo V; Shea H; Floreano D
    Soft Robot; 2018 Aug; 5(4):466-474. PubMed ID: 29957131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning hydrodynamic signatures through proprioceptive sensing by bioinspired swimmers.
    Pollard B; Tallapragada P
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33271521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of individual perceptual and cognitive factors on collective states in a data-driven fish school model.
    Wang W; Escobedo R; Sanchez S; Sire C; Han Z; Theraulaz G
    PLoS Comput Biol; 2022 Mar; 18(3):e1009437. PubMed ID: 35235565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fish-inspired segment models for undulatory steady swimming.
    Akanyeti O; Di Santo V; Goerig E; Wainwright DK; Liao JC; Castro-Santos T; Lauder GV
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35487201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creating underwater vision through wavy whiskers: a review of the flow-sensing mechanisms and biomimetic potential of seal whiskers.
    Zheng X; Kamat AM; Cao M; Kottapalli AGP
    J R Soc Interface; 2021 Oct; 18(183):20210629. PubMed ID: 34699729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vortex phase matching as a strategy for schooling in robots and in fish.
    Li L; Nagy M; Graving JM; Bak-Coleman J; Xie G; Couzin ID
    Nat Commun; 2020 Oct; 11(1):5408. PubMed ID: 33106484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy.
    Curet OM; Patankar NA; Lauder GV; Maciver MA
    J R Soc Interface; 2011 Jul; 8(60):1041-50. PubMed ID: 21177695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic advantages of in-line schooling.
    Saadat M; Berlinger F; Sheshmani A; Nagpal R; Lauder GV; Haj-Hariri H
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33513591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies to modulate zebrafish collective dynamics with a closed-loop biomimetic robotic system.
    Chemtob Y; Cazenille L; Bonnet F; Gribovskiy A; Mondada F; Halloy J
    Bioinspir Biomim; 2020 May; 15(4):046004. PubMed ID: 32252047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Any colour you like: fish interacting with bioinspired robots unravel mechanisms promoting mixed phenotype aggregations.
    Romano D; Stefanini C
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing.
    Zhang Y; Kong D; Shi Y; Cai M; Yu Q; Li S; Wang K; Liu C
    Front Bioeng Biotechnol; 2023; 11():1196922. PubMed ID: 37614630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collective navigation of cargo-carrying swarms.
    Shklarsh A; Finkelshtein A; Ariel G; Kalisman O; Ingham C; Ben-Jacob E
    Interface Focus; 2012 Dec; 2(6):786-98. PubMed ID: 24312731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.