These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3787653)

  • 1. 6-Mercaptopurine treatment affects the membrane potentials of rat skeletal muscle fibers.
    Sperelakis N; Clouva-Molyvdas P; Forbes MS; Alleva FR; Balazs T
    Toxicol Ind Health; 1986 Sep; 2(2):81-97. PubMed ID: 3787653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 6-mercaptopurine treatment on the membrane potentials of rat skeletal muscle fibers.
    Clouva-Molyvdas P; Sperelakis N; Forbes MS; Alleva FR; Balazs T
    Can J Physiol Pharmacol; 1985 Oct; 63(10):1271-8. PubMed ID: 3000553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane alterations in skeletal muscle fibers of dystrophic mice.
    Kerr LM; Sperelakis N
    Muscle Nerve; 1983 Jan; 6(1):3-13. PubMed ID: 6302500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further studies on 6-mercaptopurine-induced muscle atrophy in rats, mice, and hamsters treated as neonates.
    Alleva FR; Slaughter LJ; Abraham AA; Balazs T
    Pediatr Pharmacol (New York); 1984; 4(1):39-48. PubMed ID: 6539905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular activity of sodium in normal and dystrophic skeletal muscle from C57BL/6J mice.
    Ward KM; Wareham AC
    Exp Neurol; 1984 Mar; 83(3):629-33. PubMed ID: 6698162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of denervation and ouabain on the response of the resting membrane potential of rat skeletal muscle to potassium.
    Wareham AC
    Pflugers Arch; 1978 Mar; 373(3):225-8. PubMed ID: 567319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicological studies with 6-mercaptopurine in neonates.
    Alleva FR; Slaughter LJ; Abraham AA; Balazs T
    Toxicol Ind Health; 1986 Sep; 2(2):11-23. PubMed ID: 3787647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles.
    Chua M; Dulhunty AF
    J Gen Physiol; 1988 May; 91(5):737-57. PubMed ID: 3418320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of glucocorticoid treatment on the excitability of rat skeletal muscle.
    Ruff RL; Stühmer W; Almers W
    Pflugers Arch; 1982 Nov; 395(2):132-7. PubMed ID: 6294591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane electrical characteristics of cultured human skeletal muscle cells.
    Iannaccone ST; Li KX; Sperelakis N
    J Cell Physiol; 1987 Nov; 133(2):409-13. PubMed ID: 3680398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ethanol on electrophysiological properties of rat skeletal myotubes in culture.
    Brodie C; Sampson SR
    J Pharmacol Exp Ther; 1987 Sep; 242(3):1098-103. PubMed ID: 2821224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thyroxine on transmembrane resting potentials of skeletal muscle cells in culture.
    Sampson SR; Bannett RR; Shainberg A
    J Neurosci Res; 1982; 8(4):595-601. PubMed ID: 6298437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin depolarization of skeletal muscle in absence of external Na+.
    Wu FS; Rogus E; Zierler K
    Diabetes; 1989 Mar; 38(3):333-7. PubMed ID: 2645189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-dependent slow action potentials in normal and dystrophic mouse skeletal muscle.
    Kerr LM; Sperelakis N
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C415-22. PubMed ID: 6605692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.
    Miles MT; Cottey E; Cottey A; Stefanski C; Carlson CG
    J Neurol Sci; 2011 Apr; 303(1-2):53-60. PubMed ID: 21306738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of tri-iodothyronine on the membrane potential and intracellular sodium and potassium activities of rat soleus and extensor digitorum longus muscles.
    MacDermott M
    J Endocrinol; 1993 Sep; 138(3):503-7. PubMed ID: 8277223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular levels, DNA synthesis and ornithine decarboxylase activity in leg muscles from 6-mercaptopurine-treated rats.
    Friedman L; Gaines DW; Alleva FR; Seidler FJ; Flynn TJ; Slotkin TA; Balazs T
    Toxicol Ind Health; 1986 Sep; 2(2):57-68. PubMed ID: 2431517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of electrogenic sodium-potassium ATPase to resting membrane potential of cultured rat skeletal myotubes.
    Brodie C; Sampson SR
    Brain Res; 1985 Nov; 347(1):28-35. PubMed ID: 2996716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle atrophy and histopathology of the soleus in 6-mercaptopurine-treated rats.
    Jaweed MM; Alleva FR; Herbison GJ; Ditunno JF; Balazs T
    Toxicol Ind Health; 1986 Sep; 2(2):31-40. PubMed ID: 3787649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of sodium and potassium permeabilities in the depolarization of denervated rat muscle fibres.
    Kotsias BA; Venosa RA
    J Physiol; 1987 Nov; 392():301-13. PubMed ID: 3446781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.