These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 37876551)

  • 21. Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker's Yeast.
    Ando D; Gopinathan A
    PLoS One; 2017; 12(1):e0169455. PubMed ID: 28068389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Multiple Faces of Disordered Nucleoporins.
    Lemke EA
    J Mol Biol; 2016 May; 428(10 Pt A):2011-24. PubMed ID: 26791761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies.
    Davis LK; Ford IJ; Hoogenboom BW
    Elife; 2022 Jan; 11():. PubMed ID: 35098921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors.
    Aramburu IV; Lemke EA
    Semin Cell Dev Biol; 2017 Aug; 68():34-41. PubMed ID: 28669824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d
    Reid KM; Sunanda P; Raghothama S; Krishnan VV
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28734076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating.
    Gamini R; Han W; Stone JE; Schulten K
    PLoS Comput Biol; 2014 Mar; 10(3):e1003488. PubMed ID: 24626154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocompartmentalization of the Nuclear Pore Lumen.
    Huang K; Tagliazucchi M; Park SH; Rabin Y; Szleifer I
    Biophys J; 2020 Jan; 118(1):219-231. PubMed ID: 31839259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins.
    Denning DP; Rexach MF
    Mol Cell Proteomics; 2007 Feb; 6(2):272-82. PubMed ID: 17079785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chaperone DNAJB6 surveils FG-nucleoporins and is required for interphase nuclear pore complex biogenesis.
    Kuiper EFE; Gallardo P; Bergsma T; Mari M; Kolbe Musskopf M; Kuipers J; Giepmans BNG; Steen A; Kampinga HH; Veenhoff LM; Bergink S
    Nat Cell Biol; 2022 Nov; 24(11):1584-1594. PubMed ID: 36302971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanism of nucleocytoplasmic transport through the nuclear pore complex.
    Tetenbaum-Novatt J; Rout MP
    Cold Spring Harb Symp Quant Biol; 2010; 75():567-84. PubMed ID: 21447814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET.
    Tan PS; Lemke EA
    Methods Enzymol; 2018; 611():327-346. PubMed ID: 30471692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors.
    Tan PS; Aramburu IV; Mercadante D; Tyagi S; Chowdhury A; Spitz D; Shammas SL; Gräter F; Lemke EA
    Cell Rep; 2018 Mar; 22(13):3660-3671. PubMed ID: 29590630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.
    Denning DP; Patel SS; Uversky V; Fink AL; Rexach M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2450-5. PubMed ID: 12604785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Architecture of the cytoplasmic face of the nuclear pore.
    Bley CJ; Nie S; Mobbs GW; Petrovic S; Gres AT; Liu X; Mukherjee S; Harvey S; Huber FM; Lin DH; Brown B; Tang AW; Rundlet EJ; Correia AR; Chen S; Regmi SG; Stevens TA; Jette CA; Dasso M; Patke A; Palazzo AF; Kossiakoff AA; Hoelz A
    Science; 2022 Jun; 376(6598):eabm9129. PubMed ID: 35679405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of selectivity and specificity in a coarse-grained model of the nuclear pore complex with sequence-agnostic FG-Nups.
    Patel MK; Chakrabarti B; Panwar AS
    Phys Chem Chem Phys; 2023 Dec; 25(48):32824-32836. PubMed ID: 38018404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy.
    Sakiyama Y; Mazur A; Kapinos LE; Lim RY
    Nat Nanotechnol; 2016 Aug; 11(8):719-23. PubMed ID: 27136131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conserved spatial organization of FG domains in the nuclear pore complex.
    Atkinson CE; Mattheyses AL; Kampmann M; Simon SM
    Biophys J; 2013 Jan; 104(1):37-50. PubMed ID: 23332057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the nucleoporins that form the hairy pores.
    Huang K; Szleifer I
    Biochem Soc Trans; 2020 Aug; 48(4):1447-1461. PubMed ID: 32794558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Cohesiveness in the Permeability of the Spatial Assemblies of FG Nucleoporins.
    Gu C; Vovk A; Zheng T; Coalson RD; Zilman A
    Biophys J; 2019 Apr; 116(7):1204-1215. PubMed ID: 30902367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport.
    Terry LJ; Wente SR
    Eukaryot Cell; 2009 Dec; 8(12):1814-27. PubMed ID: 19801417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.