These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37876627)
1. Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process. Bacallado S; Favaro S; Power S; Trippa L Bayesian Anal; 2022 Sep; 17(3):685-709. PubMed ID: 37876627 [TBL] [Abstract][Full Text] [Related]
2. Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking. Moraffah B; Papandreou-Suppappola A Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009928 [TBL] [Abstract][Full Text] [Related]
3. Pitman Yor Diffusion Trees for Bayesian Hierarchical Clustering. Knowles DA; Ghahramani Z IEEE Trans Pattern Anal Mach Intell; 2015 Feb; 37(2):271-89. PubMed ID: 26353241 [TBL] [Abstract][Full Text] [Related]
4. Performance of Hamiltonian Monte Carlo and No-U-Turn Sampler for estimating genetic parameters and breeding values. Nishio M; Arakawa A Genet Sel Evol; 2019 Dec; 51(1):73. PubMed ID: 31823719 [TBL] [Abstract][Full Text] [Related]
5. Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model. Graziadei H; Lijoi A; Lopes HF; Marques F PC; PrĂ¼nster I Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285844 [TBL] [Abstract][Full Text] [Related]
6. A Novel and Highly Effective Bayesian Sampling Algorithm Based on the Auxiliary Variables to Estimate the Testlet Effect Models. Lu J; Zhang J; Zhang Z; Xu B; Tao J Front Psychol; 2021; 12():509575. PubMed ID: 34456774 [TBL] [Abstract][Full Text] [Related]
8. Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model. Zhang J; Lu J; Du H; Zhang Z Front Psychol; 2020; 11():2121. PubMed ID: 33041882 [TBL] [Abstract][Full Text] [Related]
10. Estimating CDMs Using the Slice-Within-Gibbs Sampler. Xu X; de la Torre J; Zhang J; Guo J; Shi N Front Psychol; 2020; 11():2260. PubMed ID: 33101108 [TBL] [Abstract][Full Text] [Related]
11. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation. Karabatsos G Behav Res Methods; 2017 Feb; 49(1):335-362. PubMed ID: 26956682 [TBL] [Abstract][Full Text] [Related]
12. Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process? De Blasi P; Favaro S; Lijoi A; Mena RH; PrĂ¼nster I; Ruggiero M IEEE Trans Pattern Anal Mach Intell; 2015 Feb; 37(2):212-29. PubMed ID: 26353237 [TBL] [Abstract][Full Text] [Related]
13. Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm. Yamaguchi K; Templin J Psychometrika; 2022 Dec; 87(4):1390-1421. PubMed ID: 35426059 [TBL] [Abstract][Full Text] [Related]
14. Online Learning of Hierarchical Pitman-Yor Process Mixture of Generalized Dirichlet Distributions With Feature Selection. Fan W; Sallay H; Bouguila N IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):2048-2061. PubMed ID: 27305687 [TBL] [Abstract][Full Text] [Related]
15. A Bayesian model selection approach for identifying differentially expressed transcripts from RNA sequencing data. Papastamoulis P; Rattray M J R Stat Soc Ser C Appl Stat; 2018 Jan; 67(1):3-23. PubMed ID: 29353941 [TBL] [Abstract][Full Text] [Related]
16. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension. Marnissi Y; Chouzenoux E; Benazza-Benyahia A; Pesquet JC Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265201 [TBL] [Abstract][Full Text] [Related]
17. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical network models for exchangeable structured interaction processes. Dempsey W; Oselio B; Hero A J Am Stat Assoc; 2022; 117(540):2056-2073. PubMed ID: 36908312 [TBL] [Abstract][Full Text] [Related]
19. Stochastic search item selection for factor analytic models. Mavridis D; Ntzoufras I Br J Math Stat Psychol; 2014 May; 67(2):284-303. PubMed ID: 23837882 [TBL] [Abstract][Full Text] [Related]
20. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Yang Z; Rannala B Mol Biol Evol; 1997 Jul; 14(7):717-24. PubMed ID: 9214744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]