These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 37876793)
1. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Li YR; Lyu Z; Tian Y; Fang Y; Zhu Y; Chen Y; Yang L Mol Ther Oncolytics; 2023 Dec; 31():100733. PubMed ID: 37876793 [TBL] [Abstract][Full Text] [Related]
2. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Dubrot J; Lane-Reticker SK; Kessler EA; Ayer A; Mishra G; Wolfe CH; Zimmer MD; Du PP; Mahapatra A; Ockerman KM; Davis TGR; Kohnle IC; Pope HW; Allen PM; Olander KE; Iracheta-Vellve A; Doench JG; Haining WN; Yates KB; Manguso RT Immunity; 2021 Mar; 54(3):571-585.e6. PubMed ID: 33497609 [TBL] [Abstract][Full Text] [Related]
3. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Yim S; Hwang W; Han N; Lee D Front Immunol; 2022; 13():884561. PubMed ID: 35651625 [TBL] [Abstract][Full Text] [Related]
4. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Wang L; Chen Y; Liu X; Li Z; Dai X Front Oncol; 2021; 11():704999. PubMed ID: 35111663 [TBL] [Abstract][Full Text] [Related]
5. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Li M; Sun J; Shi G Front Cell Dev Biol; 2023; 11():1220376. PubMed ID: 37427373 [TBL] [Abstract][Full Text] [Related]
6. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Afolabi LO; Afolabi MO; Sani MM; Okunowo WO; Yan D; Chen L; Zhang Y; Wan X Clin Transl Immunology; 2021; 10(6):e1286. PubMed ID: 34188916 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Mollanoori H; Shahraki H; Rahmati Y; Teimourian S Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221 [TBL] [Abstract][Full Text] [Related]
8. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Wu HY; Cao CY Brief Funct Genomics; 2019 Mar; 18(2):129-132. PubMed ID: 29579146 [TBL] [Abstract][Full Text] [Related]
9. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 Gene-Editing in Cancer Immunotherapy: Promoting the Present Revolution in Cancer Therapy and Exploring More. Ou X; Ma Q; Yin W; Ma X; He Z Front Cell Dev Biol; 2021; 9():674467. PubMed ID: 34095145 [TBL] [Abstract][Full Text] [Related]
11. A CRISPR Platform for Targeted In Vivo Screens. Maranda V; Zhang Y; Vizeacoumar FS; Freywald A; Vizeacoumar FJ Methods Mol Biol; 2023; 2614():397-409. PubMed ID: 36587138 [TBL] [Abstract][Full Text] [Related]
12. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Ren J; Zhao Y Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148 [TBL] [Abstract][Full Text] [Related]
13. CRISPR screen in cancer: status quo and future perspectives. He C; Han S; Chang Y; Wu M; Zhao Y; Chen C; Chu X Am J Cancer Res; 2021; 11(4):1031-1050. PubMed ID: 33948344 [TBL] [Abstract][Full Text] [Related]
14. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology. Sadeqi Nezhad M; Yazdanifar M; Abdollahpour-Alitappeh M; Sattari A; Seifalian A; Bagheri N Biotechnol Bioeng; 2021 Oct; 118(10):3691-3705. PubMed ID: 34241908 [TBL] [Abstract][Full Text] [Related]
15. CRISPR Gene Editing of Human Primary NK and T Cells for Cancer Immunotherapy. Elmas E; Saljoughian N; de Souza Fernandes Pereira M; Tullius BP; Sorathia K; Nakkula RJ; Lee DA; Naeimi Kararoudi M Front Oncol; 2022; 12():834002. PubMed ID: 35449580 [TBL] [Abstract][Full Text] [Related]
16. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Razeghian E; Nasution MKM; Rahman HS; Gardanova ZR; Abdelbasset WK; Aravindhan S; Bokov DO; Suksatan W; Nakhaei P; Shariatzadeh S; Marofi F; Yazdanifar M; Shamlou S; Motavalli R; Khiavi FM Stem Cell Res Ther; 2021 Jul; 12(1):428. PubMed ID: 34321099 [TBL] [Abstract][Full Text] [Related]
17. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486 [TBL] [Abstract][Full Text] [Related]
18. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Dong MB; Wang G; Chow RD; Ye L; Zhu L; Dai X; Park JJ; Kim HR; Errami Y; Guzman CD; Zhou X; Chen KY; Renauer PA; Du Y; Shen J; Lam SZ; Zhou JJ; Lannin DR; Herbst RS; Chen S Cell; 2019 Aug; 178(5):1189-1204.e23. PubMed ID: 31442407 [TBL] [Abstract][Full Text] [Related]
19. Unveiling immune checkpoint regulation: exploring the power of Wang Y; Khalil A; Kamar A; Du M; Dinh T; McFarland C; Wang Z Front Genet; 2023; 14():1304425. PubMed ID: 38162677 [TBL] [Abstract][Full Text] [Related]
20. Improving Cancer Immunotherapy with CRISPR-Based Technology. Li Z; Fei T Adv Biosyst; 2020 Nov; 4(11):e1900253. PubMed ID: 33245213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]