These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37876797)

  • 1. Recovery of LiCoO
    Feng J; Zhang B; Du P; Yuan Y; Li M; Chen X; Guo Y; Xie H; Yin H
    iScience; 2023 Nov; 26(11):108097. PubMed ID: 37876797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Co and Li
    Zhao J; Qu X; Qu J; Zhang B; Ning Z; Xie H; Zhou X; Song Q; Xing P; Yin H
    J Hazard Mater; 2019 Nov; 379():120817. PubMed ID: 31276922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and regeneration of LiCoO
    Tang Y; Xie H; Zhang B; Chen X; Zhao Z; Qu J; Xing P; Yin H
    Waste Manag; 2019 Sep; 97():140-148. PubMed ID: 31447021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling lithium cobalt oxide from its spent batteries: An electrochemical approach combining extraction and synthesis.
    Wang J; Lv J; Zhang M; Tang M; Lu Q; Qin Y; Lu Y; Yu B
    J Hazard Mater; 2021 Mar; 405():124211. PubMed ID: 33268198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct recovery of degraded LiCoO
    Yang H; Deng B; Jing X; Li W; Wang D
    Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient recovery of valuable metals from cathode materials of spent LiCoO
    Lai Y; Zhu X; Li J; Peng Q; Hu S; Xia A; Huang Y; Liao Q; Zhu X
    Waste Manag; 2022 Jul; 148():12-21. PubMed ID: 35644122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Behavior of Electrochemical Extraction of Cobalt from Spent Lithium Cobalt Oxide Cathode Materials.
    Li H; Li H; Li C; Liang J; Yan H; Xu Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching Li from mixed cathode materials of spent lithium-ion batteries
    Zha Y; Li Y; Fei Z; Fan C; Meng Q; Peng X; Dong P
    Dalton Trans; 2024 Mar; 53(12):5592-5600. PubMed ID: 38436061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
    Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J
    J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing of spent lithium-ion battery separator as a green reductant for efficiently refining the cathode metals.
    Hou W; Huang X; Tang R; Min Y; Xu Q; Hu Z; Shi P
    Waste Manag; 2023 Jan; 155():129-136. PubMed ID: 36370622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-Density Improvement in Li-Ion Rechargeable Batteries Based on LiCoO
    Bae KY; Cho SH; Kim BH; Son BD; Yoon WY
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotreatment for the spent lithium-ion battery in a three-module integrated microbial-fuel-cell recycling system.
    Huang T; Junjun T; Liu W; Song D; Yin LX; Zhang S
    Waste Manag; 2021 May; 126():377-387. PubMed ID: 33819901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient re-cycle/generation of LiCoO
    Qiu X; Hu J; Tian Y; Deng W; Yang Y; Silvester DS; Zou G; Hou H; Sun W; Hu Y; Ji X
    J Hazard Mater; 2021 Aug; 416():126114. PubMed ID: 34492910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-Process Regeneration of Highly Stable Spherical LiCoO
    He J; Cao Y; Wang X; Zhao C; Huang J; Long W; Zhou Z; Dong P; Zhang Y; Wang D; Duan J
    Chemistry; 2024 Mar; 30(13):e202303424. PubMed ID: 38116816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Mechanism of Recovery of Nickel Metal from Waste Lithium Ion Batteries by Molten Salt Electrolysis.
    Li H; Fu Y; Liang J; Li C; Wang J; Yan H; Cai Z
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries.
    Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X
    Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.