These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37877171)

  • 1. Crucial Roles of the High-Osmolarity Glycerol Pathway in the Antifungal Activity of Isothiocyanates against
    Jia W; Yu H; Fan J; Zhang J; Su L; Li D; Pan H; Zhang X
    J Agric Food Chem; 2023 Oct; 71(42):15466-15475. PubMed ID: 37877171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophus.
    Yu H; Jia W; Zhao M; Li L; Liu J; Chen J; Pan H; Zhang X
    Pest Manag Sci; 2022 Dec; 78(12):5133-5141. PubMed ID: 36053944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histidine kinases regulate allyl-isothiocyanate sensitivity in Cochliobolus heterostrophus.
    Jia W; Yu H; Fan J; Zhang J; Pan H; Zhang X
    Pest Manag Sci; 2024 Feb; 80(2):463-472. PubMed ID: 37743431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus.
    Izumitsu K; Yoshimi A; Tanaka C
    Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence.
    Yu H; Zhang J; Fan J; Jia W; Lv Y; Pan H; Zhang X
    Mol Plant Pathol; 2024 Jan; 25(1):e13413. PubMed ID: 38279855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in
    Yu H; Su L; Jia W; Jia M; Pan H; Zhang X
    J Agric Food Chem; 2024 Feb; 72(8):3926-3936. PubMed ID: 38365616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus.
    Izumitsu K; Yoshimi A; Hamada S; Morita A; Saitoh Y; Tanaka C
    Mycol Res; 2009 Oct; 113(Pt 10):1208-15. PubMed ID: 19682577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Ions are Required for
    Zhang Y; Zhang Y; Yu D; Peng Y; Min H; Lai Z
    Phytopathology; 2020 Feb; 110(2):494-504. PubMed ID: 31464158
    [No Abstract]   [Full Text] [Related]  

  • 9. The Sorting Nexin Genes
    Yu H; Jia W; Li Z; Gao C; Pan H; Zhang X
    J Fungi (Basel); 2022 Aug; 8(8):. PubMed ID: 36012843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum.
    Kurt S; Güneş U; Soylu EM
    Pest Manag Sci; 2011 Jul; 67(7):869-75. PubMed ID: 21370393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses.
    Igbaria A; Lev S; Rose MS; Lee BN; Hadar R; Degani O; Horwitz BA
    Mol Plant Microbe Interact; 2008 Jun; 21(6):769-80. PubMed ID: 18473669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen
    Zuchman R; Koren R; Horwitz BA
    J Fungi (Basel); 2021 Jan; 7(2):. PubMed ID: 33530602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The calcium-calcineurin and high-osmolarity glycerol pathways co-regulate tebuconazole sensitivity and pathogenicity in Fusarium graminearum.
    Wang H; Gai Y; Zhao Y; Wang M; Ma Z
    Pestic Biochem Physiol; 2023 Feb; 190():105311. PubMed ID: 36740345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance.
    Mattos EC; Silva LP; Valero C; de Castro PA; Dos Reis TF; Ribeiro LFC; Marten MR; Silva-Rocha R; Westmann C; da Silva CHTP; Taft CA; Al-Furaiji N; Bromley M; Mortensen UH; Benz JP; Brown NA; Goldman GH
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus Beauveria bassiana.
    Liu J; Wang ZK; Sun HH; Ying SH; Feng MG
    Environ Microbiol; 2017 May; 19(5):1808-1821. PubMed ID: 28076898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates  maize defenses.
    Ahmad I; Jiménez-Gasco MDM; Luthe DS; Barbercheck ME
    PLoS One; 2022; 17(9):e0272944. PubMed ID: 36137142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZmAGO18b negatively regulates maize resistance against southern leaf blight.
    Dai Z; Yang Q; Chen D; Li B; Que J; Hu L; Zhang B; Zhang Z; Chen K; Zhang S; Lai Z
    Theor Appl Genet; 2023 Jun; 136(7):158. PubMed ID: 37341790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.
    Simaan H; Shalaby S; Hatoel M; Karinski O; Goldshmidt-Tran O; Horwitz BA
    Curr Genet; 2020 Feb; 66(1):187-203. PubMed ID: 31312934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize.
    Inderbitzin P; Asvarak T; Turgeon BG
    Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.