These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37877220)

  • 1. Design of a hybrid left ventricular assist device with a new wireless charging system.
    Horie H; Isoyama T; Ishiyama K
    Artif Organs; 2024 Mar; 48(3):309-314. PubMed ID: 37877220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an Innovative Wireless Left Ventricular Assist Device Driven by either Extracorporeal Magnets or an Intracorporeal Battery Pack.
    Horie H; Isoyama T; Ishiyama K
    ASAIO J; 2023 Feb; 69(2):e73-e79. PubMed ID: 36716071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel impeller design for centrifugal blood pump in hybrid pediatric total artificial heart: Modeling, magnet integration, and hydraulic experiments.
    Hirschhorn M; Catucci N; Day SW; Stevens RM; Tchantchaleishvili V; Throckmorton AL
    Artif Organs; 2023 Apr; 47(4):680-694. PubMed ID: 36524792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing of a centrifugal blood pump with a high efficiency hybrid magnetic bearing.
    Locke DH; Swanson ES; Walton JF; Willis JP; Heshmat H
    ASAIO J; 2003; 49(6):737-43. PubMed ID: 14655745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary validation of a new magnetic wireless blood pump.
    Kim SH; Ishiyama K; Hashi S; Shiraishi Y; Hayatsu Y; Akiyama M; Saiki Y; Yambe T
    Artif Organs; 2013 Oct; 37(10):920-6. PubMed ID: 23634711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetically suspended centrifugal blood pump with an axially levitated motor.
    Masuzawa T; Ezoe S; Kato T; Okada Y
    Artif Organs; 2003 Jul; 27(7):631-8. PubMed ID: 12823418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary in vivo study of an intra-aortic impeller pump driven by an extracorporeal whirling magnet.
    Li G; Zhao H; Zhu X; Ren B
    Artif Organs; 2002 Oct; 26(10):890-3. PubMed ID: 12296931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. World-first implantable aortic valvo-pump (IAVP) with sufficient haemodynamic capacity.
    Qian KX; Wang DF; Topaz S; Zeng P; Ru WM; Yuan HY; Zwischenberg JB
    J Med Eng Technol; 2005; 29(6):302-4. PubMed ID: 16287680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li L
    J Med Eng Technol; 2002; 26(1):36-8. PubMed ID: 11924845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Improved design of permanent maglev impeller assist heart].
    Qian K; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):593-5. PubMed ID: 12561356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.
    Qian KX; Zeng P; Ru WM; Yuan HY
    J Med Eng Technol; 2007; 31(3):170-4. PubMed ID: 17454404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.
    Kim HC; Bearnson GB; Khanwilkar PS; Olsen DB; Maslen EH; Allaire PE
    ASAIO J; 1995; 41(3):M359-64. PubMed ID: 8573825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel permanent maglev rotary LVAD with passive magnetic bearings.
    Qian KX; Yuan HY; Zeng P; Ru WM
    J Med Eng Technol; 2005; 29(5):235-7. PubMed ID: 16126584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results.
    Karim ML; Bosnjak AM; McLaughlin J; Crawford P; McEneaney D; Escalona OJ
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Inspired Therapeutics Pediatric VAD: Benchtop Evaluation of Impeller Performance and Torques for MagLev Motor Design.
    Tompkins LH; Prina SR; Gellman BN; Morello GF; Roussel T; Kopechek JA; Williams SJ; Petit PC; Slaughter MS; Koenig SC; Dasse KA
    Cardiovasc Eng Technol; 2022 Apr; 13(2):307-317. PubMed ID: 34518953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The safety system for the rotary blood pump, combination of the valve and LVAD pulsatile mode: in vitro test.
    Tayama E; Ohashi Y; Niimi Y; Takami Y; Ohtsuka G; Nakata K; Benkowski R; Glueck JA; Nosé Y
    Artif Organs; 1998 Apr; 22(4):342-5. PubMed ID: 9555966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of a tiny Gyro centrifugal pump as an implantable ventricular assist device.
    Yoshikawa M; Nakata K; Ohtsuka G; Takano T; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 1999 Aug; 23(8):774-9. PubMed ID: 10463506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.
    Letzen B; Park J; Tuzun Z; Bonde P
    ASAIO J; 2018; 64(2):147-153. PubMed ID: 28938307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.