BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37877262)

  • 21. Inhibition of
    Dhivya LS; Sarvesh S; S AS
    J Biomol Struct Dyn; 2023; 41(12):5399-5417. PubMed ID: 35751128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advancement in Bioactive Chalcone Hybrids as Potential Antimicrobial Agents in Medicinal Chemistry.
    Maurya A; Agrawal A
    Mini Rev Med Chem; 2024; 24(2):176-195. PubMed ID: 37497710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of potent fluoro-substituted chalcones as antimicrobial agents.
    Burmaoglu S; Algul O; Gobek A; Aktas Anil D; Ulger M; Erturk BG; Kaplan E; Dogen A; Aslan G
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):490-495. PubMed ID: 28118738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, Biological Evaluation and Molecular Docking Studies of New Pyrazolines as an Antitubercular and Cytotoxic Agents.
    Lokesh BVS; Prasad YR; Shaik AB
    Infect Disord Drug Targets; 2019; 19(3):310-321. PubMed ID: 30556506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chalcone Scaffolds as Anticancer Drugs: A Review on Molecular Insight in Action of Mechanisms and Anticancer Properties.
    Shukla S; Sood AK; Goyal K; Singh A; Sharma V; Guliya N; Gulati S; Kumar S
    Anticancer Agents Med Chem; 2021; 21(13):1650-1670. PubMed ID: 33238850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones.
    Moodley S; Koorbanally NA; Moodley T; Ramjugernath D; Pillay M
    J Microbiol Methods; 2014 Sep; 104():72-8. PubMed ID: 24978593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, Anticancer and Antitubercular Properties of New Chalcones and Their Nitrogen-Containing Five-Membered Heterocyclic Hybrids Bearing Sulfonamide Moiety.
    Castaño LF; Quiroga J; Abonia R; Insuasty D; Vidal OM; Seña R; Rubio V; Puerto G; Nogueras M; Cobo J; Guzman J; Insuasty A; Insuasty B
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Azabischalcones--a new class of potential antitubercular agents].
    Kozmík V; Lhoták P; Odlerová Z; Palecek J
    Ceska Slov Farm; 1998 Mar; 47(2):87-90. PubMed ID: 9650367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach.
    Madugula SS; Nagamani S; Jamir E; Priyadarsinee L; Sastry GN
    Mol Divers; 2022 Jun; 26(3):1675-1695. PubMed ID: 34468898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB).
    Chiaradia LD; Martins PG; Cordeiro MN; Guido RV; Ecco G; Andricopulo AD; Yunes RA; Vernal J; Nunes RJ; Terenzi H
    J Med Chem; 2012 Jan; 55(1):390-402. PubMed ID: 22136336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dibenz[b,f]oxepin and Antimycobacterial Chalcone Constituents of Empetrum nigrum.
    Li H; Jean S; Webster D; Robichaud GA; Calhoun LA; Johnson JA; Gray CA
    J Nat Prod; 2015 Nov; 78(11):2837-40. PubMed ID: 26473275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis.
    Ramesh D; Joji A; Vijayakumar BG; Sethumadhavan A; Mani M; Kannan T
    Eur J Med Chem; 2020 Jul; 198():112358. PubMed ID: 32361610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.
    Srinivasan B; Johnson TE; Lad R; Xing C
    J Med Chem; 2009 Nov; 52(22):7228-35. PubMed ID: 19883086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.
    Farah SI; Abdelrahman AA; North EJ; Chauhan H
    Assay Drug Dev Technol; 2016; 14(1):29-38. PubMed ID: 26565779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity.
    Koseki Y; Aoki S
    Curr Top Med Chem; 2014; 14(1):176-88. PubMed ID: 24236720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Structural Elucidation of Novel Benzothiazole Derivatives as Anti-tubercular Agents: In-silico Screening for Possible Target Identification.
    Venugopala KN; Chandrashekharappa S; Pillay M; Bhandary S; Kandeel M; Mahomoodally FM; Morsy MA; Chopra D; Aldhubiab BE; Attimarad M; Alwassil OI; Harsha S; Mlisana K; Odhav B
    Med Chem; 2019; 15(3):311-326. PubMed ID: 29968540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs.
    Santos P; López-Vallejo F; Soto CY
    Chem Biol Drug Des; 2017 Aug; 90(2):175-187. PubMed ID: 28111912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and antitubercular activity of substituted novel pyrazoline derivatives.
    Ali MA; Yar MS; Kumar M; Pandian GS
    Nat Prod Res; 2007 Jun; 21(7):575-9. PubMed ID: 17613813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.