These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37877461)

  • 1. Learning organo-transition metal catalyzed reactions by graph neural networks.
    Sakai M; Kaneshige M; Yasuda K
    J Comput Chem; 2024 Mar; 45(6):341-351. PubMed ID: 37877461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction.
    Heid E; Green WH
    J Chem Inf Model; 2022 May; 62(9):2101-2110. PubMed ID: 34734699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DRACON: disconnected graph neural network for atom mapping in chemical reactions.
    Nikitin F; Isayev O; Strijov V
    Phys Chem Chem Phys; 2020 Nov; 22(45):26478-26486. PubMed ID: 33185200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling an organic synthesis robot with machine learning to search for new reactivity.
    Granda JM; Donina L; Dragone V; Long DL; Cronin L
    Nature; 2018 Jul; 559(7714):377-381. PubMed ID: 30022133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2019 Dec; 59(12):5026-5033. PubMed ID: 31769668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal-carboryne complexes: synthesis, bonding, and reactivity.
    Qiu Z; Ren S; Xie Z
    Acc Chem Res; 2011 Apr; 44(4):299-309. PubMed ID: 21395260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning and Quantum Calculation for Predicting Yield in Cu-Catalyzed P-H Reactions.
    Ma Y; Zhang X; Zhu L; Feng X; Kowah JAH; Jiang J; Wang L; Jiang L; Liu X
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry.
    Grambow CA; Pattanaik L; Green WH
    Sci Data; 2020 May; 7(1):137. PubMed ID: 32385318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
    Yang J; Chen Z; Sun H; Samanta A
    J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,4-Dilithio-1,3-dienes: reaction and synthetic applications.
    Xi Z
    Acc Chem Res; 2010 Oct; 43(10):1342-51. PubMed ID: 20954749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Modeling to Predict Multiple Suitable Conditions for Chemical Reactions.
    Kwon Y; Kim S; Choi YS; Kang S
    J Chem Inf Model; 2022 Dec; 62(23):5952-5960. PubMed ID: 36413480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling Chemical Reasoning to Predict and Invent Reactions.
    Segler MHS; Waller MP
    Chemistry; 2017 May; 23(25):6118-6128. PubMed ID: 27862477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
    Zhang B; Zhang X; Du W; Song Z; Zhang G; Zhang G; Wang Y; Chen X; Jiang J; Luo Y
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212711119. PubMed ID: 36191228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-guided representation for accurate graph-based molecular machine learning.
    Na GS; Chang H; Kim HW
    Phys Chem Chem Phys; 2020 Sep; 22(33):18526-18535. PubMed ID: 32780040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal-catalyzed C-C bond formation via C-S bond cleavage: an overview.
    Modha SG; Mehta VP; Van der Eycken EV
    Chem Soc Rev; 2013 Jun; 42(12):5042-55. PubMed ID: 23467811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity.
    Tavakoli M; Mood A; Van Vranken D; Baldi P
    J Chem Inf Model; 2022 May; 62(9):2121-2132. PubMed ID: 35020394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-Metal (Pd, Ni, Mn)-Catalyzed C-C Bond Constructions Involving Unactivated Alkyl Halides and Fundamental Synthetic Building Blocks.
    Kwiatkowski MR; Alexanian EJ
    Acc Chem Res; 2019 Apr; 52(4):1134-1144. PubMed ID: 30908013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A graph-convolutional neural network model for the prediction of chemical reactivity.
    Coley CW; Jin W; Rogers L; Jamison TF; Jaakkola TS; Green WH; Barzilay R; Jensen KF
    Chem Sci; 2019 Jan; 10(2):370-377. PubMed ID: 30746086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.