These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37877614)

  • 1. Modifying the Catalytic Activity of Lipopeptide Assemblies with Nucleobases.
    Vela-Gallego S; Lewandowski B; Möhler J; Puente A; Gil-Cantero D; Wennemers H; de la Escosura A
    Chemistry; 2024 Jan; 30(1):e202303395. PubMed ID: 37877614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry.
    Vicente-Garcia C; Colomer I
    Nat Rev Chem; 2023 Oct; 7(10):710-731. PubMed ID: 37726383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membranes Composed of Lipopeptides and Liponucleobases Inspired Protolife Evolution.
    Sproul GD
    Orig Life Evol Biosph; 2019 Dec; 49(4):241-254. PubMed ID: 31883067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-enzymatic routes to lipopeptides and their colloidal properties.
    Li G; Wu J; Qin X; Zhu J; Viswanathan K; Dong H; Somasundaran P; Gross RA
    Langmuir; 2014 Jun; 30(23):6889-96. PubMed ID: 24856298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly.
    Sikder A; Esen C; O'Reilly RK
    Acc Chem Res; 2022 Jun; 55(12):1609-1619. PubMed ID: 35671460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of NrTP6 cell-penetrating lipo-peptide with variable number of lipid chains: Impact of phosphate ions on lipid association.
    Phungula A; Waddad AY; Fernandez Leyes MD; Di Gianvincenzo P; Espuche B; Zuffi S; Moya SE; Albericio F; de la Torre BG
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):124-133. PubMed ID: 37837849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts.
    Hong CM; Bergman RG; Raymond KN; Toste FD
    Acc Chem Res; 2018 Oct; 51(10):2447-2455. PubMed ID: 30272943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure optimization of lipopeptide assemblies for aldol reactions in an aqueous medium.
    Soares BM; Sodré PT; Aguilar AM; Gerbelli BB; Pelin JNBD; Argüello KB; Silva ER; de Farias MA; Portugal RV; Schmuck C; Coutinho-Neto MD; Alves WA
    Phys Chem Chem Phys; 2021 May; 23(18):10953-10963. PubMed ID: 33913458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide.
    Pelin JNBD; Edwards-Gayle CJC; Castelletto V; Aguilar AM; Alves WA; Seitsonen J; Ruokolainen J; Hamley IW
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13671-13679. PubMed ID: 32134243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide.
    Castelletto V; Kirkham S; Hamley IW; Kowalczyk R; Rabe M; Reza M; Ruokolainen J
    Biomacromolecules; 2016 Feb; 17(2):631-40. PubMed ID: 26752598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed Recognition between Complementary Dinucleolipids To Control the Self-Assembly of Lipidic Amphiphiles.
    Morales-Reina S; Giri C; Leclercq M; Vela-Gallego S; de la Torre I; Castón JR; Surin M; de la Escosura A
    Chemistry; 2020 Jan; 26(5):1082-1090. PubMed ID: 31729787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic dehydrative S-allylation of cysteine-containing peptides in aqueous media toward lipopeptide chemistry.
    Jaisankar P; Tanaka S; Kitamura M
    J Org Chem; 2011 Mar; 76(6):1894-7. PubMed ID: 21319858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal-Aqueous Interface.
    Yang X; Tian Y; Li F; Yu Q; Tan SF; Chen Y; Yang Z
    Langmuir; 2019 Feb; 35(7):2490-2497. PubMed ID: 30696245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism of asymmetric catalysts based on amphiphilic lipopeptides in solution.
    Pelin JNBD; Edwards-Gayle CJC; Aguilar AM; Kaur A; Hamley IW; Alves WA
    Soft Matter; 2020 May; 16(19):4615-4624. PubMed ID: 32368775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly.
    Rodríguez-Llansola F; Miravet JF; Escuder B
    Chemistry; 2010 Jul; 16(28):8480-6. PubMed ID: 20540050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Controllable Bio-Inspired Chiroptic Self-Assemblies.
    Tao K; Jacoby G; Burlaka L; Beck R; Gazit E
    Biomacromolecules; 2016 Sep; 17(9):2937-45. PubMed ID: 27461453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide.
    Castelletto V; Edwards-Gayle CJC; Greco F; Hamley IW; Seitsonen J; Ruokolainen J
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33573-33580. PubMed ID: 31407889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.