These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37877649)

  • 1. Transparent and Soft Crack-Resistant Bouligand Elastomers Inspired by Fish Scales.
    Shu J; Teng Q; Zhang H; Wu J; Liu Z
    Macromol Rapid Commun; 2024 Feb; 45(3):e2300526. PubMed ID: 37877649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale fracture model to reveal the toughening mechanism in bioinspired Bouligand structures.
    Nie Y; Li D
    Acta Biomater; 2024 Mar; 176():267-276. PubMed ID: 38296014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties.
    Natarajan B; Gilman JW
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and simulation of fracture behavior in naturally occurring Bouligand structures.
    Yang F; Xie W; Meng S
    Acta Biomater; 2021 Nov; 135():473-482. PubMed ID: 34530141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels.
    Wang H; Cheng L; Yu J; Si Y; Ding B
    Nat Commun; 2024 Jan; 15(1):336. PubMed ID: 38184664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic-Polymer Composites.
    Wen SM; Chen SM; Gao W; Zheng Z; Bao JZ; Cui C; Liu S; Gao HL; Yu SH
    Adv Mater; 2023 May; 35(21):e2211175. PubMed ID: 36891767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact resistance of nanocellulose films with bioinspired Bouligand microstructures.
    Qin X; Marchi BC; Meng Z; Keten S
    Nanoscale Adv; 2019 Apr; 1(4):1351-1361. PubMed ID: 36132592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity.
    Wu K; Song Z; Zhang S; Ni Y; Cai S; Gong X; He L; Yu SH
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15465-15472. PubMed ID: 32571926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twisting cracks in Bouligand structures.
    Suksangpanya N; Yaraghi NA; Kisailus D; Zavattieri P
    J Mech Behav Biomed Mater; 2017 Dec; 76():38-57. PubMed ID: 28629739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired elastomer composites with programmed mechanical and electrical anisotropies.
    Ling Y; Pang W; Liu J; Page M; Xu Y; Zhao G; Stalla D; Xie J; Zhang Y; Yan Z
    Nat Commun; 2022 Jan; 13(1):524. PubMed ID: 35082331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula.
    Sherman VR; Quan H; Yang W; Ritchie RO; Meyers MA
    J Mech Behav Biomed Mater; 2017 Sep; 73():1-16. PubMed ID: 27816416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Interface Engineering in Elastomer/Graphene Composites by Constructing Sacrificial Metal-Ligand Bonds.
    Huang J; Tang Z; Yang Z; Guo B
    Macromol Rapid Commun; 2016 Jul; 37(13):1040-5. PubMed ID: 27229634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and Self-Healing Elastomers for Reconfigurable 3D Materials.
    Yimyai T; Pena-Francesch A; Crespy D
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200554. PubMed ID: 35996274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft Defect-Tolerant Material Inspired by American Lobsters.
    Zhang H; Shu J; Wu J; Liu Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26509-26514. PubMed ID: 32408733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Hard Segment Content and Diisocyanate Structure on the Transparency and Mechanical Properties of Poly(dimethylsiloxane)-Based Urea Elastomers for Biomedical Applications.
    Riehle N; Athanasopulu K; Kutuzova L; Götz T; Kandelbauer A; Tovar GEM; Lorenz G
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33435271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells.
    Chang Y; Chen PY
    Acta Biomater; 2016 Feb; 31():33-49. PubMed ID: 26607769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely Strong and Tough Biodegradable Poly(urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogen-Bonding Interactions.
    Guo R; Zhang Q; Wu Y; Chen H; Liu Y; Wang J; Duan X; Chen Q; Ge Z; Zhang Y
    Adv Mater; 2023 May; 35(21):e2212130. PubMed ID: 36822221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Inspired Transparent Soft Jellyfish Robot.
    Wang Y; Zhang P; Huang H; Zhu J
    Soft Robot; 2023 Jun; 10(3):590-600. PubMed ID: 36577053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements.
    Zhang CW; Zou W; Yu HC; Hao XP; Li G; Li T; Yang W; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52430-52439. PubMed ID: 36351752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions.
    Sun N; Di M; Liu Y
    Int J Biol Macromol; 2021 Aug; 184():1-8. PubMed ID: 34118286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.