These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37877768)

  • 1. Perspectives on Nasal Odorant Metabolism Research.
    Kornbausch N; Mérignac-Lacombe J; Neiers F; Thomas-Danguin T; Heydel JM; Steinke M; Hackenberg S; Loos HM
    J Agric Food Chem; 2023 Nov; 71(44):16488-16492. PubMed ID: 37877768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process.
    Robert-Hazotte A; Faure P; Ménétrier F; Folia M; Schwartz M; Le Quéré JL; Neiers F; Thomas-Danguin T; Heydel JM
    J Agric Food Chem; 2022 Jul; 70(27):8385-8394. PubMed ID: 35776896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nasal odorant metabolism: enzymes, activity and function in olfaction.
    Heydel JM; Faure P; Neiers F
    Drug Metab Rev; 2019 May; 51(2):224-245. PubMed ID: 31203698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex vivo real-time monitoring of volatile metabolites resulting from nasal odorant metabolism.
    Robert-Hazotte A; Schoumacker R; Semon E; Briand L; Guichard E; Le Quéré JL; Faure P; Heydel JM
    Sci Rep; 2019 Feb; 9(1):2492. PubMed ID: 30792537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception.
    Ijichi C; Wakabayashi H; Sugiyama S; Ihara Y; Nogi Y; Nagashima A; Ihara S; Niimura Y; Shimizu Y; Kondo K; Touhara K
    Chem Senses; 2019 Sep; 44(7):465-481. PubMed ID: 31254383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events.
    Heydel JM; Coelho A; Thiebaud N; Legendre A; Le Bon AM; Faure P; Neiers F; Artur Y; Golebiowski J; Briand L
    Anat Rec (Hoboken); 2013 Sep; 296(9):1333-45. PubMed ID: 23907783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity.
    Rygg AD; Van Valkenburgh B; Craven BA
    Chem Senses; 2017 Oct; 42(8):683-698. PubMed ID: 28981825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical model of nasal odorant transport for the analysis of human olfaction.
    Keyhani K; Scherer PW; Mozell MM
    J Theor Biol; 1997 Jun; 186(3):279-301. PubMed ID: 9219668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions Between Odorants and Glutathione Transferases in the Human Olfactory Cleft.
    Schwartz M; Menetrier F; Heydel JM; Chavanne E; Faure P; Labrousse M; Lirussi F; Canon F; Mannervik B; Briand L; Neiers F
    Chem Senses; 2020 Nov; 45(8):645-654. PubMed ID: 32822468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odorant Metabolism in Humans.
    Kornbausch N; Debong MW; Buettner A; Heydel JM; Loos HM
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202202866. PubMed ID: 35522818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction.
    Lawson MJ; Craven BA; Paterson EG; Settles GS
    Chem Senses; 2012 Jul; 37(6):553-66. PubMed ID: 22473924
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Villwock JA; Li J; Moore C; Chiu AG; Sykes KJ
    Ann Otol Rhinol Laryngol; 2020 Jan; 129(1):39-45. PubMed ID: 31416326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses on the influence of normal nasal morphological variations on odorant transport to the olfactory cleft.
    Sicard RM; Shah R; Frank-Ito DO
    Inhal Toxicol; 2022; 34(11-12):350-358. PubMed ID: 36045580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of human oxidoreductases involved in aldehyde odorant metabolism.
    Boichot V; Menetrier F; Saliou JM; Lirussi F; Canon F; Folia M; Heydel JM; Hummel T; Menzel S; Steinke M; Hackenberg S; Schwartz M; Neiers F
    Sci Rep; 2023 Mar; 13(1):4876. PubMed ID: 36966166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mass transport model of olfaction.
    Hahn I; Scherer PW; Mozell MM
    J Theor Biol; 1994 Mar; 167(2):115-28. PubMed ID: 8207942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nasal airflow rate affects the sensitivity and pattern of glomerular odorant responses in the mouse olfactory bulb.
    Oka Y; Takai Y; Touhara K
    J Neurosci; 2009 Sep; 29(39):12070-8. PubMed ID: 19793965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odorant-odorant metabolic interaction, a novel actor in olfactory perception and behavioral responsiveness.
    Hanser HI; Faure P; Robert-Hazotte A; Artur Y; Duchamp-Viret P; Coureaud G; Heydel JM
    Sci Rep; 2017 Aug; 7(1):10219. PubMed ID: 28860551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior.
    Robert-Hazotte A; Faure P; Neiers F; Potin C; Artur Y; Coureaud G; Heydel JM
    Sci Rep; 2019 Feb; 9(1):3104. PubMed ID: 30816217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of typical potent odorants in cola-flavored carbonated beverages by aroma extract dilution analysis.
    Lorjaroenphon Y; Cadwallader KR
    J Agric Food Chem; 2015 Jan; 63(3):769-75. PubMed ID: 25528884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SmellSpace: An Odor-Based Social Network as a Platform for Collecting Olfactory Perceptual Data.
    Snitz K; Perl O; Honigstein D; Secundo L; Ravia A; Yablonka A; Endevelt-Shapira Y; Sobel N
    Chem Senses; 2019 Apr; 44(4):267-278. PubMed ID: 30873534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.