BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37878682)

  • 1. Computational prediction of human deep intronic variation.
    Barbosa P; Savisaar R; Carmo-Fonseca M; Fonseca A
    Gigascience; 2022 Dec; 12():. PubMed ID: 37878682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining genetic constraint with predictions of alternative splicing to prioritize deleterious splicing in rare disease studies.
    Cormier MJ; Pedersen BS; Bayrak-Toydemir P; Quinlan AR
    BMC Bioinformatics; 2022 Nov; 23(1):482. PubMed ID: 36376793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome.
    Hiraide T; Shimizu K; Okumura Y; Miyamoto S; Nakashima M; Ogata T; Saitsu H
    J Hum Genet; 2023 Jul; 68(7):499-505. PubMed ID: 36894704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes.
    Moles-Fernández A; Domènech-Vivó J; Tenés A; Balmaña J; Diez O; Gutiérrez-Enríquez S
    Cancers (Basel); 2021 Jul; 13(13):. PubMed ID: 34283047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking deep learning splice prediction tools using functional splice assays.
    Riepe TV; Khan M; Roosing S; Cremers FPM; 't Hoen PAC
    Hum Mutat; 2021 Jul; 42(7):799-810. PubMed ID: 33942434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications.
    Sullivan PJ; Gayevskiy V; Davis RL; Wong M; Mayoh C; Mallawaarachchi A; Hort Y; McCabe MJ; Beecroft S; Jackson MR; Arts P; Dubowsky A; Laing N; Dinger ME; Scott HS; Oates E; Pinese M; Cowley MJ
    Genome Biol; 2023 May; 24(1):118. PubMed ID: 37198692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking splice variant prediction algorithms using massively parallel splicing assays.
    Smith C; Kitzman JO
    Genome Biol; 2023 Dec; 24(1):294. PubMed ID: 38129864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.
    Lee M; Roos P; Sharma N; Atalar M; Evans TA; Pellicore MJ; Davis E; Lam AN; Stanley SE; Khalil SE; Solomon GM; Walker D; Raraigh KS; Vecchio-Pagan B; Armanios M; Cutting GR
    Am J Hum Genet; 2017 May; 100(5):751-765. PubMed ID: 28475858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing.
    Leman R; Parfait B; Vidaud D; Girodon E; Pacot L; Le Gac G; Ka C; Ferec C; Fichou Y; Quesnelle C; Aucouturier C; Muller E; Vaur D; Castera L; Boulouard F; Ricou A; Tubeuf H; Soukarieh O; Gaildrat P; Riant F; Guillaud-Bataille M; Caputo SM; Caux-Moncoutier V; Boutry-Kryza N; Bonnet-Dorion F; Schultz I; Rossing M; Quenez O; Goldenberg L; Harter V; Parsons MT; Spurdle AB; Frébourg T; Martins A; Houdayer C; Krieger S
    Hum Mutat; 2022 Dec; 43(12):2308-2323. PubMed ID: 36273432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide detection of human intronic AG-gain variants located between splicing branchpoints and canonical splice acceptor sites.
    Zhang P; Chaldebas M; Ogishi M; Al Qureshah F; Ponsin K; Feng Y; Rinchai D; Milisavljevic B; Han JE; Moncada-Vélez M; Keles S; Schröder B; Stenson PD; Cooper DN; Cobat A; Boisson B; Zhang Q; Boisson-Dupuis S; Abel L; Casanova JL
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2314225120. PubMed ID: 37931111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CI-SpliceAI-Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites.
    Strauch Y; Lord J; Niranjan M; Baralle D
    PLoS One; 2022; 17(6):e0269159. PubMed ID: 35657932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs.
    Vreeswijk MP; Kraan JN; van der Klift HM; Vink GR; Cornelisse CJ; Wijnen JT; Bakker E; van Asperen CJ; Devilee P
    Hum Mutat; 2009 Jan; 30(1):107-14. PubMed ID: 18693280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of computational methods for splice-disrupting variants and improving the performance using the machine learning-based framework.
    Liu H; Dai J; Li K; Sun Y; Wei H; Wang H; Zhao C; Wang DW
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35976049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing.
    Kurosawa R; Iida K; Ajiro M; Awaya T; Yamada M; Kosaki K; Hagiwara M
    BMC Genomics; 2023 Oct; 24(1):601. PubMed ID: 37817060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive characterisation of intronic mis-splicing mutations in human cancers.
    Jung H; Lee KS; Choi JK
    Oncogene; 2021 Feb; 40(7):1347-1361. PubMed ID: 33420369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rules and tools to predict the splicing effects of exonic and intronic mutations.
    Ohno K; Takeda JI; Masuda A
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28949076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncanonical Splice Site and Deep Intronic FRMD7 Variants Activate Cryptic Exons in X-linked Infantile Nystagmus.
    Lee J; Jeong H; Won D; Shin S; Lee ST; Choi JR; Byeon SH; Kuht HJ; Thomas MG; Han J
    Transl Vis Sci Technol; 2022 Jun; 11(6):25. PubMed ID: 35762937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations.
    Richards AJ; McNinch A; Whittaker J; Treacy B; Oakhill K; Poulson A; Snead MP
    Eur J Hum Genet; 2012 May; 20(5):552-8. PubMed ID: 22189268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.