These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37878835)
1. Oscillation Charging Dynamics in Nanopore Supercapacitors with Organic Electrolyte. Mo T; Zhou J; He H; Zhu B ACS Appl Mater Interfaces; 2023 Nov; 15(44):51274-51280. PubMed ID: 37878835 [TBL] [Abstract][Full Text] [Related]
2. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors. Mo T; Peng J; Dai W; Chen M; Presser V; Feng G ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344 [TBL] [Abstract][Full Text] [Related]
3. Molecular Understanding of Charging Dynamics in Supercapacitors with Porous Electrodes and Ionic Liquids. Mo T; He H; Zhou J; Zeng L; Long Y; Feng G J Phys Chem Lett; 2023 Dec; 14(50):11258-11267. PubMed ID: 38060214 [TBL] [Abstract][Full Text] [Related]
4. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores. Mo T; Bi S; Zhang Y; Presser V; Wang X; Gogotsi Y; Feng G ACS Nano; 2020 Feb; 14(2):2395-2403. PubMed ID: 31999427 [TBL] [Abstract][Full Text] [Related]
5. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors. Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517 [TBL] [Abstract][Full Text] [Related]
6. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes. Pean C; Daffos B; Rotenberg B; Levitz P; Haefele M; Taberna PL; Simon P; Salanne M J Am Chem Soc; 2015 Oct; 137(39):12627-32. PubMed ID: 26369420 [TBL] [Abstract][Full Text] [Related]
7. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Bi S; Banda H; Chen M; Niu L; Chen M; Wu T; Wang J; Wang R; Feng J; Chen T; Dincă M; Kornyshev AA; Feng G Nat Mater; 2020 May; 19(5):552-558. PubMed ID: 32015536 [TBL] [Abstract][Full Text] [Related]
8. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes? Lian C; Liu H; Henderson D; Wu J J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561 [TBL] [Abstract][Full Text] [Related]
9. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size. Henrique F; Zuk PJ; Gupta A Soft Matter; 2021 Dec; 18(1):198-213. PubMed ID: 34870312 [TBL] [Abstract][Full Text] [Related]
10. New Perspectives on the Charging Mechanisms of Supercapacitors. Forse AC; Merlet C; Griffin JM; Grey CP J Am Chem Soc; 2016 May; 138(18):5731-44. PubMed ID: 27031622 [TBL] [Abstract][Full Text] [Related]
11. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Huang J; Sumpter BG; Meunier V Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455 [TBL] [Abstract][Full Text] [Related]
12. Organic Solvent Boosts Charge Storage and Charging Dynamics of Conductive MOF Supercapacitors. Chen M; Wu T; Niu L; Ye T; Dai W; Zeng L; Kornyshev AA; Wang Z; Liu Z; Feng G Adv Mater; 2024 Jul; 36(30):e2403202. PubMed ID: 38751336 [TBL] [Abstract][Full Text] [Related]
13. On the dynamics of charging in nanoporous carbon-based supercapacitors. Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256 [TBL] [Abstract][Full Text] [Related]
14. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. Uralcan B; Uralcan IB ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144 [TBL] [Abstract][Full Text] [Related]
15. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions. Burt R; Breitsprecher K; Daffos B; Taberna PL; Simon P; Birkett G; Zhao XS; Holm C; Salanne M J Phys Chem Lett; 2016 Oct; 7(19):4015-4021. PubMed ID: 27661760 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study. He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086 [TBL] [Abstract][Full Text] [Related]
17. Relation between Charging Times and Storage Properties of Nanoporous Supercapacitors. Aslyamov T; Sinkov K; Akhatov I Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214915 [TBL] [Abstract][Full Text] [Related]
18. Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors Liu A; Zhang H; Xing C; Wang Y; Zhang J; Zhang X; Zhang S ACS Appl Mater Interfaces; 2021 May; 13(18):21349-21361. PubMed ID: 33905225 [TBL] [Abstract][Full Text] [Related]
19. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. Richey FW; Dyatkin B; Gogotsi Y; Elabd YA J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377 [TBL] [Abstract][Full Text] [Related]
20. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors. Pak AJ; Hwang GS ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]