These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37879068)
41. Fabrication of Durable, Chemically Stable, Self-Healing Superhydrophobic Fabrics Utilizing Gellable Fluorinated Block Copolymer for Multifunctional Applications. Wang Z; Yao D; He Z; Liu Y; Wang H; Zheng Y ACS Appl Mater Interfaces; 2022 Oct; 14(42):48106-48122. PubMed ID: 36240508 [TBL] [Abstract][Full Text] [Related]
42. Multifunctional Silica-Silicone Nanocomposite with Regenerative Superhydrophobic Capabilities. Elzaabalawy A; Verberne P; Meguid SA ACS Appl Mater Interfaces; 2019 Nov; 11(45):42827-42837. PubMed ID: 31623429 [TBL] [Abstract][Full Text] [Related]
43. Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. Zhang GD; Wu ZH; Xia QQ; Qu YX; Pan HT; Hu WJ; Zhao L; Cao K; Chen EY; Yuan Z; Gao JF; Mai YW; Tang LC ACS Appl Mater Interfaces; 2021 May; 13(19):23161-23172. PubMed ID: 33955739 [TBL] [Abstract][Full Text] [Related]
44. Porous polydimethylsiloxane films with specific surface wettability but distinct regular physical structures fabricated by 3D printing. He Z; Wang N; Mu L; Wang Z; Su J; Chen Y; Luo M; Wu Y; Lan X; Mao J Front Bioeng Biotechnol; 2023; 11():1272565. PubMed ID: 37811382 [TBL] [Abstract][Full Text] [Related]
45. 3D printing stretchable and compressible porous structures by polymerizable emulsions for soft robotics. Bliah O; Joe S; Reinberg R; Nardin AB; Beccai L; Magdassi S Mater Horiz; 2023 Oct; 10(11):4976-4985. PubMed ID: 37622226 [TBL] [Abstract][Full Text] [Related]
46. Robust Superhydrophobic PDMS@SiO Zhai G; Wu J; Yuan Z; Li H; Sun D Inorg Chem; 2023 Apr; 62(14):5447-5457. PubMed ID: 36961917 [TBL] [Abstract][Full Text] [Related]
47. Printability of Poly(lactic acid) Ink by Embedded 3D Printing Karyappa R; Liu H; Zhu Q; Hashimoto M ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653 [TBL] [Abstract][Full Text] [Related]
48. Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Zhao S; Zhao J; Wen M; Yao M; Wang F; Huang F; Zhang Q; Cheng YB; Zhong J Langmuir; 2018 Sep; 34(38):11316-11324. PubMed ID: 30184434 [TBL] [Abstract][Full Text] [Related]
49. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths. Davis A; Surdo S; Caputo G; Bayer IS; Athanassiou A ACS Appl Mater Interfaces; 2018 Jan; 10(3):2907-2917. PubMed ID: 29286629 [TBL] [Abstract][Full Text] [Related]
50. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. Koh JJ; Lim GJH; Zhou X; Zhang X; Ding J; He C ACS Appl Mater Interfaces; 2019 Apr; 11(14):13787-13795. PubMed ID: 30884229 [TBL] [Abstract][Full Text] [Related]
51. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup. Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211 [TBL] [Abstract][Full Text] [Related]
52. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. Xue CH; Li YR; Zhang P; Ma JZ; Jia ST ACS Appl Mater Interfaces; 2014 Jul; 6(13):10153-61. PubMed ID: 24942304 [TBL] [Abstract][Full Text] [Related]
53. Flexible, Elastic, and Superhydrophobic/Superoleophilic Adhesive for Reusable and Durable Water/Oil Separation Coating. Lim SM; Ryu J; Sohn EH; Lee SG; Park IJ; Hong J; Kang HS ACS Appl Mater Interfaces; 2022 Mar; 14(8):10825-10835. PubMed ID: 35176848 [TBL] [Abstract][Full Text] [Related]
54. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication. Yun X; Xiong Z; He Y; Wang X RSC Adv; 2020 Jan; 10(9):5478-5486. PubMed ID: 35498279 [TBL] [Abstract][Full Text] [Related]
55. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces. He Y; Wang L; Wu T; Wu Z; Chen Y; Yin K Nanoscale; 2022 Jul; 14(26):9392-9400. PubMed ID: 35730522 [TBL] [Abstract][Full Text] [Related]
56. Ultraviolet-Assisted Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. Rau DA; Herzberger J; Long TE; Williams CB ACS Appl Mater Interfaces; 2018 Oct; 10(41):34828-34833. PubMed ID: 30289680 [TBL] [Abstract][Full Text] [Related]
57. On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites. Vazirinasab E; Maghsoudi K; Momen G; Jafari R Soft Matter; 2022 Jan; 18(2):412-424. PubMed ID: 34904993 [TBL] [Abstract][Full Text] [Related]
58. Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Celik N; Sahin F; Ruzi M; Yay M; Unal E; Onses MS Colloids Surf B Biointerfaces; 2021 Sep; 205():111864. PubMed ID: 34049000 [TBL] [Abstract][Full Text] [Related]
59. Transparent Oil-Water Separating Spiky SiO Nguyen NB; Ly NH; Tran HN; Son SJ; Joo SW; Vasseghian Y; Osman SM; Luque R Small Methods; 2023 Mar; 7(3):e2201257. PubMed ID: 36683199 [TBL] [Abstract][Full Text] [Related]
60. Application of Superhydrophobic Mesh Coated by PDMS/TiO Cao K; Huang X; Pan J Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]