These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37879203)
41. Design and fabrication of a centrifugal microfluidic disc including septum valve for measuring hemoglobin A1c in human whole blood using immunoturbidimetry method. Mahmodi Arjmand E; Saadatmand M; Bakhtiari MR; Eghbal M Talanta; 2018 Dec; 190():134-139. PubMed ID: 30172489 [TBL] [Abstract][Full Text] [Related]
42. Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. Brassard D; Geissler M; Descarreaux M; Tremblay D; Daoud J; Clime L; Mounier M; Charlebois D; Veres T Lab Chip; 2019 Jun; 19(11):1941-1952. PubMed ID: 30997461 [TBL] [Abstract][Full Text] [Related]
43. An integrated biosensor platform for extraction and detection of nucleic acids. Sciuto EL; Petralia S; Calabrese G; Conoci S Biotechnol Bioeng; 2020 May; 117(5):1554-1561. PubMed ID: 31997343 [TBL] [Abstract][Full Text] [Related]
44. Dielectric heating of highly corrosive and oxidizing reagents on a hybrid glass microfiber-polymer centrifugal microfluidic device. O'Connell KC; Lawless NK; Stewart BM; Landers JP Lab Chip; 2022 Jun; 22(13):2549-2565. PubMed ID: 35674228 [TBL] [Abstract][Full Text] [Related]
45. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949 [TBL] [Abstract][Full Text] [Related]
46. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings. Smith S; Mager D; Perebikovsky A; Shamloo E; Kinahan D; Mishra R; Torres Delgado SM; Kido H; Saha S; Ducrée J; Madou M; Land K; Korvink JG Micromachines (Basel); 2016 Jan; 7(2):. PubMed ID: 30407395 [TBL] [Abstract][Full Text] [Related]
47. A centrifugal microfluidic device with integrated gold leaf electrodes for the electrophoretic separation of DNA. Thompson BL; Birch C; Nelson DA; Li J; DuVall JA; Le Roux D; Tsuei AC; Mills DL; Root BE; Landers JP Lab Chip; 2016 Nov; 16(23):4569-4580. PubMed ID: 27766331 [TBL] [Abstract][Full Text] [Related]
48. On-Line Dual-Active Valves Based Centrifugal Microfluidic Chip for Fully Automated Point-of-Care Immunoassay. Qian C; Wan C; Li S; Xiao Y; Yuan H; Gao S; Wu L; Zhou M; Feng X; Li Y; Chen P; Liu BF Anal Chem; 2023 Aug; 95(33):12521-12531. PubMed ID: 37556853 [TBL] [Abstract][Full Text] [Related]
49. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. Arshavsky-Graham S; Segal E Adv Biochem Eng Biotechnol; 2022; 179():247-265. PubMed ID: 32435872 [TBL] [Abstract][Full Text] [Related]
50. Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves. Henderson BD; Kinahan DJ; Rio J; Mishra R; King D; Torres-Delgado SM; Mager D; Korvink JG; Ducrée J Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33800811 [TBL] [Abstract][Full Text] [Related]
51. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Hu B; Li J; Mou L; Liu Y; Deng J; Qian W; Sun J; Cha R; Jiang X Lab Chip; 2017 Jun; 17(13):2225-2234. PubMed ID: 28573279 [TBL] [Abstract][Full Text] [Related]
52. An Integrated Multiple Electrochemical miRNA Sensing System Embedded into a Microfluidic Chip. Gonzalez-Losada P; Freisa M; Poujouly C; Gamby J Biosensors (Basel); 2022 Feb; 12(3):. PubMed ID: 35323415 [TBL] [Abstract][Full Text] [Related]
53. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Nguyen HV; Nguyen VD; Lee EY; Seo TS Biosens Bioelectron; 2019 Jul; 136():132-139. PubMed ID: 31078871 [TBL] [Abstract][Full Text] [Related]
54. A Temperature Control Method for Microaccelerometer Chips Based on Genetic Algorithm and Fuzzy PID Control. Chen J; Lu Q; Bai J; Xu X; Yao Y; Fang W Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945361 [TBL] [Abstract][Full Text] [Related]
55. A review on microfluidics in the detection of food pesticide residues. Xu B; Guo J; Fu Y; Chen X; Guo J Electrophoresis; 2020 Jun; 41(10-11):821-832. PubMed ID: 31525822 [TBL] [Abstract][Full Text] [Related]
56. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. Pandiyan VP; John R Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958 [TBL] [Abstract][Full Text] [Related]
57. Lab-on-a-Disc for Point-of-Care Infection Diagnostics. Sunkara V; Kumar S; Sabaté Del Río J; Kim I; Cho YK Acc Chem Res; 2021 Oct; 54(19):3643-3655. PubMed ID: 34516092 [TBL] [Abstract][Full Text] [Related]
58. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays. Gonzalez-Suarez AM; Long A; Huang X; Revzin A Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127 [TBL] [Abstract][Full Text] [Related]
59. Oscillatory-Flow PCR Microfluidic Chip Driven by Low Speed Biaxial Centrifugation. Fan Y; Dai R; Lu S; Liu X; Zhou T; Yang C; Hu X; Lv X; Li X Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232917 [TBL] [Abstract][Full Text] [Related]
60. Microfluidic chip to interface porous microneedles for ISF collection. Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]