These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37879347)

  • 1. Tuning of excitons in phosphorene atomic chains.
    Huang W; Zhong J; Sheng W; Zhou A
    J Phys Condens Matter; 2023 Nov; 36(7):. PubMed ID: 37879347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors.
    Xu R; Zhang S; Wang F; Yang J; Wang Z; Pei J; Myint YW; Xing B; Yu Z; Fu L; Qin Q; Lu Y
    ACS Nano; 2016 Feb; 10(2):2046-53. PubMed ID: 26713882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal scaling of excitons in phosphorene quantum dots.
    Zhong J; Huang L; Sheng W
    Phys Chem Chem Phys; 2020 Mar; 22(10):5723-5728. PubMed ID: 32104811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling of energy gaps in phosphorene nanoflakes.
    Huang L; Zhong J; Sheng W; Zhou A
    J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34814118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials.
    Olsen T; Latini S; Rasmussen F; Thygesen KS
    Phys Rev Lett; 2016 Feb; 116(5):056401. PubMed ID: 26894722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Dielectric Screening for Potential-well Arrays of Excitons in 2D Materials.
    Peimyoo N; Wu HY; Escolar J; De Sanctis A; Prando G; Vollmer F; Withers F; Riis-Jensen AC; Craciun MF; Thygesen KS; Russo S
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55134-55140. PubMed ID: 33232104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Huge Trionic Effects in Graphene Nanoribbons.
    Deilmann T; Rohlfing M
    Nano Lett; 2017 Nov; 17(11):6833-6837. PubMed ID: 29068689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling of excitons in graphene nanodots.
    Sheng W; Wang H
    Phys Chem Chem Phys; 2016 Oct; 18(40):28365-28369. PubMed ID: 27711650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials.
    Choi JH; Cui P; Lan H; Zhang Z
    Phys Rev Lett; 2015 Aug; 115(6):066403. PubMed ID: 26296125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Absorption Due to Defect-Localized Interlayer Excitons in Transition-Metal Dichalcogenide-Graphene Heterostructures.
    Hernangómez-Pérez D; Kleiner A; Refaely-Abramson S
    Nano Lett; 2023 Jul; 23(13):5995-6001. PubMed ID: 37348129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational calculation of the lowest exciton states in phosphorene and transition metal dichalcogenides.
    Gomes JNS; Trallero-Giner C; Vasilevskiy MI
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34298536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Brightening in Monolayer Phosphorene via Dimensionality Modification.
    Xu R; Yang J; Myint YW; Pei J; Yan H; Wang F; Lu Y
    Adv Mater; 2016 May; 28(18):3493-8. PubMed ID: 26990082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric screening of excitons in monolayer graphene.
    Yadav P; Srivastava PK; Ghosh S
    Nanoscale; 2015 Nov; 7(43):18015-9. PubMed ID: 26469682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric screening of excitons and trions in single-layer MoS2.
    Lin Y; Ling X; Yu L; Huang S; Hsu AL; Lee YH; Kong J; Dresselhaus MS; Palacios T
    Nano Lett; 2014 Oct; 14(10):5569-76. PubMed ID: 25216267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional excitons in monolayer transition metal dichalcogenides from radial equation and variational calculations.
    Zhang JZ; Ma JZ
    J Phys Condens Matter; 2019 Mar; 31(10):105702. PubMed ID: 30664498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hubbard excitons in two-dimensional nanomaterials.
    Huang L; Xie J; Sheng W
    J Phys Condens Matter; 2019 Jul; 31(27):275302. PubMed ID: 30952139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors.
    Su H; Xu D; Cheng SW; Li B; Liu S; Watanabe K; Taniguchi T; Berkelbach TC; Hone JC; Delor M
    Nano Lett; 2022 Apr; 22(7):2843-2850. PubMed ID: 35294835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.