These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37879375)
1. World war munitions as a source of mercury in the southwest Baltic Sea. Gosnell KJ; Heimbürger-Boavida LE; Beck AJ; Ukotije-Ikwut PR; Achterberg EP Chemosphere; 2023 Dec; 345():140522. PubMed ID: 37879375 [TBL] [Abstract][Full Text] [Related]
2. Presence of mercury and methylmercury in Baltic Sea sediments, collected in ammunition dumpsites. Siedlewicz G; Korejwo E; Szubska M; Grabowski M; Kwasigroch U; Bełdowski J Mar Environ Res; 2020 Dec; 162():105158. PubMed ID: 33065518 [TBL] [Abstract][Full Text] [Related]
3. Sea-dumped ammunition as a possible source of mercury to the Baltic Sea sediments. Bełdowski J; Szubska M; Siedlewicz G; Korejwo E; Grabowski M; Bełdowska M; Kwasigroch U; Fabisiak J; Łońska E; Szala M; Pempkowiak J Sci Total Environ; 2019 Jul; 674():363-373. PubMed ID: 31005838 [TBL] [Abstract][Full Text] [Related]
4. Deep impact? Is mercury in dab (Limanda limanda) a marker for dumped munition? Results from munition dump site Kolberger Heide (Baltic Sea). Kammann U; Aust MO; Siegmund M; Schmidt N; Straumer K; Lang T Environ Monit Assess; 2021 Nov; 193(12):788. PubMed ID: 34757592 [TBL] [Abstract][Full Text] [Related]
5. Mercury distribution and methylmercury mobility in the sediments of three sites on the Lebanese coast, eastern Mediterranean. Abi-Ghanem C; Nakhlé K; Khalaf G; Cossa D Arch Environ Contam Toxicol; 2011 Apr; 60(3):394-405. PubMed ID: 20625711 [TBL] [Abstract][Full Text] [Related]
6. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Kwasigroch U; Bełdowska M; Jędruch A; Łukawska-Matuszewska K Environ Sci Pollut Res Int; 2021 Jul; 28(27):35690-35708. PubMed ID: 33675497 [TBL] [Abstract][Full Text] [Related]
7. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India--a UNESCO World Heritage Site. Chatterjee M; Canário J; Sarkar SK; Branco V; Godhantaraman N; Bhattacharya BD; Bhattacharya A Environ Monit Assess; 2012 Sep; 184(9):5239-54. PubMed ID: 21968876 [TBL] [Abstract][Full Text] [Related]
8. Mercury and its form in a dammed reservoir ecosystem during the charging phase. Mir Y; Wu S; Ma M; Mangwandi C; Mirza ZA Environ Sci Pollut Res Int; 2020 Oct; 27(29):37099-37113. PubMed ID: 32577982 [TBL] [Abstract][Full Text] [Related]
9. Role of Sediment Resuspension on Estuarine Suspended Particulate Mercury Dynamics. Seelen EA; Massey GM; Mason RP Environ Sci Technol; 2018 Jul; 52(14):7736-7744. PubMed ID: 29927238 [TBL] [Abstract][Full Text] [Related]
10. Net methylmercury production as a basis for improved risk assessment of mercury-contaminated sediments. Skyllberg U; Drott A; Lambertsson L; Björn E; Karlsson T; Johnson T; Heinemo SA; Holmström H Ambio; 2007 Sep; 36(6):437-42. PubMed ID: 17985697 [TBL] [Abstract][Full Text] [Related]
11. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA). Gandhi N; Bhavsar SP; Diamond ML; Kuwabara JS; Marvin-Dipasquale M; Krabbenhoft DP Environ Toxicol Chem; 2007 Nov; 26(11):2260-73. PubMed ID: 17941724 [TBL] [Abstract][Full Text] [Related]
12. Explosives compounds from sea-dumped relic munitions accumulate in marine biota. Beck AJ; Gledhill M; Kampmeier M; Feng C; Schlosser C; Greinert J; Achterberg EP Sci Total Environ; 2022 Feb; 806(Pt 4):151266. PubMed ID: 34757098 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. Ji X; Liu C; Zhang M; Yin Y; Pan G Water Res; 2020 Apr; 173():115563. PubMed ID: 32059129 [TBL] [Abstract][Full Text] [Related]
14. Factors that influence methylmercury flux rates from wetland sediments. Holmes J; Lean D Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the influence of seasonal stratification on mercury methylation rates in the water column and sediment in a contaminated section of a western U.S.A. reservoir. Millard G; Eckley CS; Luxton TP; Krabbenhoft D; Goetz J; McKernan J; DeWild J Environ Pollut; 2023 Jan; 316(Pt 1):120485. PubMed ID: 36279994 [TBL] [Abstract][Full Text] [Related]
16. The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem. Liang P; Feng X; You Q; Gao X; Xu J; Wong M; Christie P; Wu SC Environ Sci Pollut Res Int; 2017 Nov; 24(33):25923-25932. PubMed ID: 28940142 [TBL] [Abstract][Full Text] [Related]
17. Effects of physical disturbance of sediment on the cycling of mercury in coastal regions. Wang W; Wang Y; Li Y; Song Y; Liu G; Yin Y; Cai Y Sci Total Environ; 2022 Sep; 838(Pt 3):156298. PubMed ID: 35660443 [TBL] [Abstract][Full Text] [Related]
18. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Faganeli J; Horvat M; Covelli S; Fajon V; Logar M; Lipej L; Cermelj B Sci Total Environ; 2003 Mar; 304(1-3):315-26. PubMed ID: 12663193 [TBL] [Abstract][Full Text] [Related]
19. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. He T; Lu J; Yang F; Feng X Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225 [TBL] [Abstract][Full Text] [Related]
20. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Sharif A; Monperrus M; Tessier E; Bouchet S; Pinaly H; Rodriguez-Gonzalez P; Maron P; Amouroux D Sci Total Environ; 2014 Oct; 496():701-713. PubMed ID: 25091142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]