These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 37879420)

  • 21. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis.
    Motohashi N; Alexander MS; Shimizu-Motohashi Y; Myers JA; Kawahara G; Kunkel LM
    J Cell Sci; 2013 Jun; 126(Pt 12):2678-91. PubMed ID: 23606743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle.
    Whitlock JM
    Results Probl Cell Differ; 2024; 71():257-279. PubMed ID: 37996682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.
    Domenighetti AA; Mathewson MA; Pichika R; Sibley LA; Zhao L; Chambers HG; Lieber RL
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C247-C257. PubMed ID: 29694232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skeletal muscle satellite cells and adult myogenesis.
    Le Grand F; Rudnicki MA
    Curr Opin Cell Biol; 2007 Dec; 19(6):628-33. PubMed ID: 17996437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.
    Shan T; Xu Z; Wu W; Liu J; Wang Y
    J Cell Physiol; 2017 Nov; 232(11):2964-2967. PubMed ID: 27943289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.
    Fry CS; Kirby TJ; Kosmac K; McCarthy JJ; Peterson CA
    Cell Stem Cell; 2017 Jan; 20(1):56-69. PubMed ID: 27840022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells.
    Ambrosio R; De Stefano MA; Di Girolamo D; Salvatore D
    Mol Cell Endocrinol; 2017 Dec; 459():79-83. PubMed ID: 28630021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development.
    Wood WM; Etemad S; Yamamoto M; Goldhamer DJ
    Dev Biol; 2013 Dec; 384(1):114-27. PubMed ID: 24055173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells.
    De Luca G; Ferretti R; Bruschi M; Mezzaroma E; Caruso M
    Stem Cells; 2013 Nov; 31(11):2478-91. PubMed ID: 23897741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche.
    Kowalski K; Dos Santos M; Maire P; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2018 Sep; 9(1):258. PubMed ID: 30261919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate.
    Lozano-Velasco E; Vallejo D; Esteban FJ; Doherty C; Hernández-Torres F; Franco D; Aránega AE
    Mol Cell Biol; 2015 Sep; 35(17):2892-909. PubMed ID: 26055324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism.
    Zecchini S; Giovarelli M; Perrotta C; Morisi F; Touvier T; Di Renzo I; Moscheni C; Bassi MT; Cervia D; Sandri M; Clementi E; De Palma C
    Autophagy; 2019 Jan; 15(1):58-77. PubMed ID: 30081710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of secreted miRNAs and proteins during proliferation and differentiation of bovine satellite cells in culture implies potential roles in regulating myogenesis.
    Nielsen SD; Sahebekhtiari N; Huang Z; Young JF; Rasmussen MK
    Gene; 2024 Feb; 894():147979. PubMed ID: 37952749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.
    Crist CG; Montarras D; Buckingham M
    Cell Stem Cell; 2012 Jul; 11(1):118-26. PubMed ID: 22770245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases.
    Zhao Y; Chen M; Lian D; Li Y; Li Y; Wang J; Deng S; Yu K; Lian Z
    Cells; 2019 Aug; 8(9):. PubMed ID: 31461973
    [No Abstract]   [Full Text] [Related]  

  • 38. Pitx genes are redeployed in adult myogenesis where they can act to promote myogenic differentiation in muscle satellite cells.
    Knopp P; Figeac N; Fortier M; Moyle L; Zammit PS
    Dev Biol; 2013 May; 377(1):293-304. PubMed ID: 23438814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Satellite cells, the engines of muscle repair.
    Wang YX; Rudnicki MA
    Nat Rev Mol Cell Biol; 2011 Dec; 13(2):127-33. PubMed ID: 22186952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Satellite cells and the muscle stem cell niche.
    Yin H; Price F; Rudnicki MA
    Physiol Rev; 2013 Jan; 93(1):23-67. PubMed ID: 23303905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.