BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37879487)

  • 1. Life cycle assessment of biostimulant production from algal biomass grown on piggery wastewater.
    Rojo EM; Rossi S; Bolado S; Stampino PG; Ficara E; Dotelli G
    Sci Total Environ; 2024 Jan; 907():168083. PubMed ID: 37879487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agricultural products from algal biomass grown in piggery wastewater: A techno-economic analysis.
    Rojo EM; Molinos-Senante M; Filipigh AA; Lafarga T; Fernández FGA; Bolado S
    Sci Total Environ; 2023 Aug; 887():164159. PubMed ID: 37187395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A life cycle assessment of energy recovery using briquette from wastewater grown microalgae biomass.
    Marangon BB; Calijuri ML; Castro JS; Assemany PP
    J Environ Manage; 2021 May; 285():112171. PubMed ID: 33609975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of integrated microalgae oil production in Bojongsoang Wastewater Treatment Plant, Indonesia.
    Kurniawan KIA; Putra AS; Ishizaki R; Rani DS; Rahmah DM; Al Husna SN; Ahamed T; Noguchi R
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7902-7933. PubMed ID: 38168854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing environmental performance in biogas production from wastewater-grown microalgae: A life cycle assessment perspective.
    Santurbano V; Marangon B; Castro J; Calijuri ML; Leme M; Assemany P
    J Environ Manage; 2024 Jun; 362():121251. PubMed ID: 38823295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wastewater-grown microalgae biomass as a source of sustainable aviation fuel: Life cycle assessment comparing hydrothermal routes.
    Marangon BB; Castro JS; Assemany PP; Machado NA; Calijuri ML
    J Environ Manage; 2024 Jun; 360():121164. PubMed ID: 38768524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of CO
    Almomani F; Al Ketife A; Judd S; Shurair M; Bhosale RR; Znad H; Tawalbeh M
    Sci Total Environ; 2019 Apr; 662():662-671. PubMed ID: 30703724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae based biofertilizer: A life cycle approach.
    Castro JS; Calijuri ML; Ferreira J; Assemany PP; Ribeiro VJ
    Sci Total Environ; 2020 Jul; 724():138138. PubMed ID: 32268288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review.
    Li S; Li X; Ho SH
    Chemosphere; 2022 Mar; 291(Pt 1):132863. PubMed ID: 34774903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle and techno-economic assessment of source-separated wastewater-integrated microalgae biofuel production plant: A nutrient organization approach.
    Li P; Luo Y; Yuan X
    Bioresour Technol; 2022 Jan; 344(Pt B):126230. PubMed ID: 34732373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a side-stream microalgae process into a municipal wastewater treatment plant: A life cycle analysis.
    Tua C; Ficara E; Mezzanotte V; Rigamonti L
    J Environ Manage; 2021 Feb; 279():111605. PubMed ID: 33168296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO
    Lage S; Gentili FG
    Chemosphere; 2023 Feb; 313():137344. PubMed ID: 36457266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO
    Sánchez-Quintero Á; Fernandes SCM; Beigbeder JB
    Microbiol Res; 2023 Dec; 277():127505. PubMed ID: 37832502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies.
    Wang H; Wu B; Jiang N; Liu J; Zhao Y; Xu J; Wang H
    Bioresour Technol; 2023 Feb; 370():128483. PubMed ID: 36513303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production.
    Kandimalla P; Desi S; Vurimindi H
    Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies.
    Pereira ASAP; Silva TAD; Magalhães IB; Ferreira J; Braga MQ; Lorentz JF; Assemany PP; Couto EAD; Calijuri ML
    Sci Total Environ; 2024 Apr; 920():170918. PubMed ID: 38354809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.